849 research outputs found

    Higgsless Electroweak Theory following from the Spherical Geometry

    Full text link
    A new formulation of the Electroweak Model with 3-dimensional spherical geometry in the target space is suggested. The free Lagrangian in the spherical field space along with the standard gauge field Lagrangian form the full Higgsless Lagrangian of the model, whose second order terms reproduce the same fields with the same masses as the Standard Electroweak Model. The vector bosons and electron masses are generated automatically, so there is no need in special mechanism.Comment: 6 page

    New Confining N=1 Supersymmetric Gauge Theories

    Get PDF
    We examine N=1 supersymmetric gauge theories which confine in the presence of a tree-level superpotential. We show the confining spectra which satisfy the 't Hooft anomaly matching conditions and give a simple method to find the confining superpotential. Using this method we fix the confining superpotentials in the simplest cases, and show how these superpotentials are generated by multi-instanton effects in the dual theory. These new type of confining theories may be useful for model building, since the size of the matter content is not restricted by an index constraint. Therefore, one expects that a large variety of new confining spectra can be obtained using such models.Comment: 26 pages, LaTe

    The Minimal Set of Electroweak Precision Parameters

    Full text link
    We present a simple method for analyzing the impact of precision electroweak data above and below the Z-peak on flavour-conserving heavy new physics. We find that experiments have probed about ten combinations of new physics effects, which to a good approximation can be condensed into the effective oblique parameters Shat, That, Uhat, V, X, W, Y (we prove positivity constraints W, Y >= 0) and three combinations of quark couplings (including a distinct parameter for the bottom). We apply our method to generic extra Z' vectors.Comment: 22 pages, 3 figure

    Chiral Compactification on a Square

    Full text link
    We study quantum field theory in six dimensions with two of them compactified on a square. A simple boundary condition is the identification of two pairs of adjacent sides of the square such that the values of a field at two identified points differ by an arbitrary phase. This allows a chiral fermion content for the four-dimensional theory obtained after integrating over the square. We find that nontrivial solutions for the field equations exist only when the phase is a multiple of \pi/2, so that this compactification turns out to be equivalent to a T^2/Z_4 orbifold associated with toroidal boundary conditions that are either periodic or anti-periodic. The equality of the Lagrangian densities at the identified points in conjunction with six-dimensional Lorentz invariance leads to an exact Z_8\times Z_2 symmetry, where the Z_2 parity ensures the stability of the lightest Kaluza-Klein particle.Comment: 28 pages, latex. References added. Clarifying remarks included in section 2. Minor corrections made in section

    Gauge-Higgs Unification in Orbifold Models

    Get PDF
    Six-dimensional orbifold models where the Higgs field is identified with some internal component of a gauge field are considered. We classify all possible T^2/Z_N orbifold constructions based on a SU(3) electroweak gauge symmetry. Depending on the orbifold twist, models with two, one or zero Higgs doublets can be obtained. Models with one Higgs doublet are particularly interesting because they lead to a prediction for the Higgs mass, which is twice the W boson mass at leading order: m_H=2 m_W. The electroweak scale is quadratically sensitive to the cut-off, but only through very specific localized operators. We study in detail the structure of these operators at one loop, and identify a class of models where they do not destabilize the electroweak scale at the leading order. This provides a very promising framework to construct realistic and predictive models of electroweak symmetry breaking.Comment: 27 pages, uses axodraw.sty; v2: version to appear in JHE

    SOME REMARKS ON THE CONSTRUCTION OF PHASE TRAJECTORIES

    Get PDF

    A New Custodian for a Realistic Higgsless Model

    Get PDF
    We present an example of a realistic Higgsless model that makes use of alternative SU(2)RSU(2)_R assignments for the top and bottom quarks recently proposed by Agashe et al. which results in an enhanced custodial symmetry. Using these new representat ions reduces the deviations in the ZbbˉZb_\ell\bar{b}_\ell coupling to 4\sim 4% for a wide range of parameters, while this remaining correction can also be eliminated by varying the localization parameter (bulk mass) for brb_r.Comment: 11 pages, 2 figure

    Odd Decays from Even Anomalies: Gauge Mediation Signatures Without SUSY

    Full text link
    We analyze the theory and phenomenology of anomalous global chiral symmetries in the presence of an extra dimension. We propose a simple extension of the Standard Model in 5D whose signatures closely resemble those of supersymmetry with gauge mediation, and we suggest a novel scalar dark matter candidate.Comment: 26 pages, 1 figure; v2: references added; discussion of direct collider constraints added; v3: corrected dark matter calculation in chapter 4.2 and replaced figure 1

    Vacuum Energy Density and Cosmological Constant in dS Brane World

    Full text link
    We discuss the vacuum energy density and the cosmological constant of dS5_5 brane world with a dilaton field. It is shown that a stable AdS4_4 brane can be constructed and gravity localization can be realized. An explicit relation between the dS bulk cosmological constant and the brane cosmological constant is obtained. The discrete mass spectrum of the massive scalar field in the AdS4_4 brane is used to acquire the relationship between the brane cosmological constant and the vacuum energy density. The vacuum energy density in the brane gotten by this method is in agreement with astronomical observations.Comment: 16 pages,4 figure

    Static Solutions for Brane Models with a Bulk Scalar Field

    Get PDF
    We present static solutions of the 5-dimensional Einstein equations in the brane-world scenario by using two different approaches for the stabilization of the extra dimension. Assuming a ``phenomenological'' stabilization mechanism, that creates a non-vanishing T^55\hat T^5_5 in the bulk, we construct a two-brane model, which allows both branes to have positive self-energies. We then consider a candidate theory for the dynamical stabilization, through the introduction of a massless scalar field in the bulk, which interacts with the branes. We find exact static solutions for the metric and scalar field in the bulk and demonstrate that the inter-brane distance is determined by the parameters of scalar field-brane interactions. However, these solutions are always accompanied by a correlation between the bulk cosmological constant, the brane self-energies and the interaction terms of the scalar field with the branes and thus cannot be considered as candidates for the phenomenologically viable stabilized geometry. We find that the aforementioned correlation cannot be avoided even in the case of a single-brane solution with positive self-energy where the fifth dimension ends on a singularity.Comment: 16 pages, revised version, to appear in Phys. Lett.
    corecore