17 research outputs found

    Interplay between amplified spontaneous emission, förster resonant energy transfer, and self-absorption in hybrid poly(9,9-dioctylfluorene)-CdSe/ ZnS nanocrystal thin films

    No full text
    We investigated the excitation density dependence of the photoluminescence spectra of hybrid poly(9,9dioctylfluorene)-CdSe/ZnS nanocrystals (PF8-NCs) thin films. We demonstrate that this experiment allows the determination of the efficiency of all the CdSe/ZnS NCs excitation processes and that the presence of amplified spontaneous emission (ASE) from the PF8 leads to a strong dependence of the NC excitation processes from the laser excitation density. Below the PF8 ASE threshold only about 6% of the excitons in the NCs are due to pump laser absorption, while about 94% of the NC excitation is due to the interaction with the PF8, and it is due for about 58% to PF8--NC Förster resonant energy transfer (FRET) and for about 37% to reabsorption by the NCs of the PF8 luminescence. The presence of PF8 ASE significantly modifies this scenario by strongly decreasing the FRET importance and strongly increasing the reabsorption one. The interplay between reduced FRET and increased reabsorption overall decreases the NC excitation due to PF8 indicating that ASE from the donors should be avoided if efficient NCs excitation under strong pumping is wished. © 2010 American Chemical Society

    Zinc oxide nanostructured layers for gas sensing applications

    No full text
    Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO 2. The variation in the photoluminescence emission of the films when exposed to NO 2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO 2 concentrations down to 3 ppm at room temperatur

    Photoinduced surface trapping and the observed carrier multiplication yields in static CdSe nanocrystal samples.

    No full text
    Photocharging has been suggested recently as the explanation for the spread of carrier multiplication yields reported by different groups. If this hypothesis can be plausible in the case of PbSe, it is inconsistent with the reported experimental data relative to CdSe nanocrystals and cannot therefore explain the large discrepancies found in that material system between static and stirred samples. An alternative explanation, photoinduced surface trapping, is suggested here, based on the results of atomistic semiempirical pseudopotential calculations of the Auger recombination rates in a number of excitonic configurations including a variety of surface traps, which show that the photoinduced surface trapping of the hole, which leaves the core negatively charged (but the nanocrystal neutral overall), can lead to recombination rates that are indistinguishable from those of a conventional biexciton with four core-delocalized carriers and therefore result in exaggerated CM yields in static samples. In contrast, the recombination rate of a charged exciton is found to be at least a factor of 2.3 smaller than that of the biexciton and therefore easily distinguishable from it experimentally. Although increased trapping at surface states was dismissed as unlikely for PbSe nanocrystals, in the case of CdSe, this hypothesis is further supported by much experimental evidence including recent spectroscopic measurements on CdSe nanostructures, single-nanocrystal photoionization studies on CdSe core/shell nanocrystals, and state-resolved transient absorption studies of biexcitonic states, all showing increased probability of surface trapping for highly excited states. These results suggest that multicarrier processes could be mediated by different mechanisms in CdSe and PbSe nanocrystals
    corecore