4,306 research outputs found

    Mie plasmons: modes volumes, quality factors and coupling strengths (Purcell factor) to a dipolar emitter

    Get PDF
    Using either quasi-static approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor QnQ_n and define the effective volume VnV_n of the nthn^{th} mode in a such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio Qn/VnQ_n/V_n (Purcell factor). The role of Joule losses, far-field scattering and mode confinement in the coupling mechanism are introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.Comment: (in press) International Journal of Optics (2011

    Purcell factor for point-like dipolar emitter coupling to 2D-plasmonic waveguides

    Full text link
    We theoretically investigate the spontaneous emission of a point--like dipolar emitter located near a two--dimensional (2D) plasmonic waveguide of arbitrary form. We invoke an explicite link with the density of modes of the waveguide describing the electromagnetic channels into which the emitter can couple. We obtain a closed form expression for the coupling to propagative plasmon, extending thus the Purcell factor to plasmonic configurations. Radiative and non-radiative contributions to the spontaneous emission are also discussed in details

    Near-field properties of plasmonic nanostructures with high aspect ratio

    Full text link
    Using the Green's dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretizing the object with cells with aspect ratios similar to the object's aspect ratio improves the computations, without degrading the convergency. We also compare our numerical simulations to finite element method and discuss further possible improvements

    Quantum Plasmonics with multi-emitters: Application to adiabatic control

    Full text link
    We construct mode-selective effective models describing the interaction of N quantum emitters (QEs) with the localised surface plasmon polaritons (LSPs) supported by a spherical metal nanoparticle (MNP) in an arbitrary geometric arrangement of the QEs. We develop a general formulation in which the field response in the presence of the nanosystem can be decomposed into orthogonal modes with the spherical symmetry as an example. We apply the model in the context of quantum information, investigating on the possibility of using the LSPs as mediators of an efficient control of population transfer between two QEs. We show that a Stimulated Raman Adiabatic Passage configuration allows such a transfer via a decoherence-free dark state when the QEs are located on the same side of the MNP and very closed to it, whereas the transfer is blocked when the emitters are positioned at the opposite sides of the MNP. We explain this blockade by the destructive superposition of all the interacting plasmonic modes

    Pre-determining the location of electromigrated gaps by nonlinear optical imaging

    Full text link
    In this paper we describe a nonlinear imaging method employed to spatially map the occurrence of constrictions occurring on an electrically-stressed gold nanowire. The approach consists at measuring the influence of a tightly focused ultrafast pulsed laser on the electronic transport in the nanowire. We found that structural defects distributed along the nanowire are efficient nonlinear optical sources of radiation and that the differential conductance is significantly decreased when the laser is incident on such electrically-induced morphological changes. This imaging technique is applied to pre-determined the location of the electrical failure before it occurs.Comment: 3 figure

    Micromegas in a Bulk

    Full text link
    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicineComment: 6 pages, 4 figure
    • …
    corecore