386 research outputs found

    Monitoring Microtubule Mechanical Vibrations via Optomechanical Coupling

    Full text link
    The possible disruption of a microtubule during mitosis can control the duplication of a cancer cell. Cancer detection and treatment may be possible based on the detection and control of microtubule mechanical oscillations in cells through external fields (e.g. electromagnetic or ultrasound). However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here we propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical induced transparency of an optical probe field, which can be detected with state-of the art technology. The center frequency and linewidth of the transparency peak give the resonance frequency and damping rate of the microtubule respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method should yield new knowledge about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs

    Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach

    Get PDF
    The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C α elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and β-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins

    Correction: Electro-acoustic behavior of the mitotic spindle: A semi-classical coarse-grained model (PLoS ONE (2014) 9:1 (e86501) DOI: 10.1371/journal.pone.0086501)

    Get PDF
    There are errors in the values reported for parameters a, b, c, and V in Table 1. Please see the correct Table 1 here. [Table Preasented]. There is an error in the equation in the third sentence in the “The arrangement of microtubules” subsection of the Models section. The equation describing the distance from the origin of the coordinate system for MTOC placement on the x-axis is incorrect. Please see the correct equation here: [Formola Presented]. There is an error in the Eq (6) in the “Calculation of the intensity of the electric field” subsection of the Models section. Please see the correct Eq (6) here: [Formola Presented]. There is an error in the Eq (7) in the “Calculation of the intensity of the electric field” subsection of the Models section. Please see the correct Eq (7) here: [Formola Presented]. The authors confirm that the code used in the modelling do not contain the errors in parameters and equations, which affect only the description of the models. The results and conclusions are therefore unaffected by these corrections to the reporting of the methodology. There are errors in the scale of the y-axis shown for the bottom panel of Fig 10. Please see the correct Fig 10 here.[Figure Presented]

    Using multifractal analysis of ultra-weak photon emission from germinating wheat seedlings to differentiate between two grades of intoxication with potassium dichromate

    Full text link
    Abstract. The aim of the present study was to test whether the multifractal properties of ultra-weak photon emission (UPE) from germinating wheat seedlings (Triticum aestivum) change when the seedlings are treated with different concentrations of the toxin potassium dichromate (PD). To this end, UPE was measured (50 seedlings in one Petri dish, duration: approx. 16.6–28 h) from samples of three groups: (i) control (group C, N = 9), (ii) treated with 25 ppm of PD (group G25, N = 32), and (iii) treated with 150 ppm of PD (group G150, N = 23). For the multifractal analysis, the following steps where performed: (i) each UPE time series was trimmed to a final length of 1000 min; (ii) each UPE time series was filtered, linear detrended and normalized; (iii) the multifractal spectrum (f(α)) was calculated for every UPE time series using the backward multifractal detrended moving average (MFDMA) method; (iv) each multifractal spectrum was characterized by calculating the mode (αmode) of the spectrum and the degree of multifractality (Δα); (v) for every UPE time series its mean, skewness and kurtosis were also calculated; finally (vi) all obtained parameters where analyzed to determine their ability to differentiate between the three groups. This was based on Fisher’s discriminant ratio (FDR), which was calculated for each parameter combination. Additionally, a non-parametric test was used to test whether the parameter values are significantly different or not. The analysis showed that when comparing all the three groups, FDR had the highest values for the multifractal parameters (αmode, Δα). Furthermore, the differences in these parameters between the groups were statistically significant (p < 0.05). The classical parameters (mean, skewness and kurtosis) had lower FDR values than the multifractal parameters in all cases and showed no significant difference between the groups (except for the skewness between group C and G150). In conclusion, multifractal analysis enables changes in UPE time series to be detected even when they are hidden for normal linear signal analysis methods. The analysis of changes in the multifractal properties might be a basis to design a classification system enabling the intoxication of cell cultures to be quantified based on UPE measurements

    Influence of solvent quality on polymer solutions: a Monte Carlo study of bulk and interfacial properties

    Full text link
    The effect of solvent quality on dilute and semi-dilute regimes of polymers in solution is studied by means of Monte Carlo simulations. The equation of state, adsorptions near a hard wall, wall-polymer surface tension and effective depletion potentials are all calculated as a function of concentration and solvent quality. We find important differences between polymers in good and theta solvents. In the dilute regime, the physical properties for polymers in a theta solvent closely resemble those of ideal polymers. In the semi-dilute regime, however, significant differences are found.Comment: 10 pages, 13 figure

    Early Stages of Homopolymer Collapse

    Full text link
    Interest in the protein folding problem has motivated a wide range of theoretical and experimental studies of the kinetics of the collapse of flexible homopolymers. In this Paper a phenomenological model is proposed for the kinetics of the early stages of homopolymer collapse following a quench from temperatures above to below the theta temperature. In the first stage, nascent droplets of the dense phase are formed, with little effect on the configurations of the bridges that join them. The droplets then grow by accreting monomers from the bridges, thus causing the bridges to stretch. During these two stages the overall dimensions of the chain decrease only weakly. Further growth of the droplets is accomplished by the shortening of the bridges, which causes the shrinking of the overall dimensions of the chain. The characteristic times of the three stages respectively scale as the zeroth, 1/5 and 6/5 power of the the degree of polymerization of the chain.Comment: 11 pages, 3 figure

    Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation

    Get PDF
    Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin’s C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world
    • …
    corecore