18 research outputs found

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery

    Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana

    Get PDF
    Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not infective to mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both

    Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes

    Get PDF
    Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs

    LC–MS-based absolute metabolite quantification:Application to metabolic flux measurement in trypanosomes

    Get PDF
    Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite, Trypanosoma brucei. In the mammalian bloodstream, the trypanosome’s metabolism differs significantly from that of its host. For example, the parasite relies exclusively on glycolysis for energy source. Recently, computational and mathematical models of trypanosome metabolism have been generated to assist in understanding the parasite metabolism with the aim of facilitating drug development. Optimisation of these models requires quantitative information, including metabolite concentrations and/or metabolic fluxes that have been hitherto unavailable on a large scale. Here, we have implemented an LC–MS-based method that allows large scale quantification of metabolite levels by using U-13C-labelled E. coli extracts as internal standards. Known amounts of labelled E. coli extract were added into the parasite samples, as well as calibration standards, and used to obtain calibration curves enabling us to convert intensities into concentrations. This method allowed us to reliably quantify the changes of 43 intracellular metabolites and 32 extracellular metabolites in the medium over time. Based on the absolute quantification, we were able to compute consumption and production fluxes. These quantitative data can now be used to optimise computational models of parasite metabolism
    corecore