8 research outputs found

    Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212

    Full text link
    The superconducting gap - an energy scale tied to the superconducting phenomena-opens on the Fermi surface at the superconducting transition temperature (TC) in conventional BCS superconductors. Quite differently, in underdoped high-TC superconducting cuprates, a pseudogap, whose relation to the superconducting gap remains a mystery, develops well above TC. Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above TC is one of the central questions in high-TC research. While some experimental evidence suggests they are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2212 in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap which opens at TC and exhibits a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasiparticles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments. The emerging two-gap phenomenon points to a picture of richer quantum configurations in high temperature superconductors.Comment: 16 pages, 4 figures, authors' version Corrected typos in the abstrac

    Occurrence of Fermi Pockets without Pseudogap Hypothesis and Clarification of the Energy Distribution Curves of Angle-Resolved Photoemission Spectroscopy in Underdoped Cuprate Superconductors

    Full text link
    Central issues in the electronic structure of underdoped cuprate superconductors are to clarify the shape of the Fermi surfaces and the origin of the pseudogap. On the basis of the model proposed by Kamimura and Suwa, which bears important features originating from the interplay of Jahn-Teller physics and Mott physics, the feature of Fermi surfaces in underdoped cuprates is the presence of Fermi pockets constructed from doped holes under the coexistence of a metallic state and a local antiferromagnetic order. Below TcT_{\rm c}, the holes on Fermi pockets form Cooper pairs with d-wave symmetry in the nodal region. In the antinodal region, there are no Fermi surfaces. In this study we calculate the energy distribution curves (EDCs) of angle-resolved photoemission spectroscopy (ARPES) below TcT_{\rm c}. It is shown that the feature of ARPES profiles of underdoped cuprates consists of a coherent peak in the nodal region and real transitions of photoexcited electrons from occupied states below the Fermi level to a free-electron state above the vacuum level in the antinodal region, where the latter transitions form a broad hump. From this feature, the origin of the two distinct gaps observed by ARPES is elucidated without introducing the concept of the pseudogap. Finally, a remark is made on the phase diagram of underdoped cuprates.Comment: arXiv admin note: significant text overlap with arXiv:1006.058

    Adaptive design methods in clinical trials – a review

    Get PDF
    In recent years, the use of adaptive design methods in clinical research and development based on accrued data has become very popular due to its flexibility and efficiency. Based on adaptations applied, adaptive designs can be classified into three categories: prospective, concurrent (ad hoc), and retrospective adaptive designs. An adaptive design allows modifications made to trial and/or statistical procedures of ongoing clinical trials. However, it is a concern that the actual patient population after the adaptations could deviate from the originally target patient population and consequently the overall type I error (to erroneously claim efficacy for an infective drug) rate may not be controlled. In addition, major adaptations of trial and/or statistical procedures of on-going trials may result in a totally different trial that is unable to address the scientific/medical questions the trial intends to answer. In this article, several commonly considered adaptive designs in clinical trials are reviewed. Impacts of ad hoc adaptations (protocol amendments), challenges in by design (prospective) adaptations, and obstacles of retrospective adaptations are described. Strategies for the use of adaptive design in clinical development of rare diseases are discussed. Some examples concerning the development of Velcade intended for multiple myeloma and non-Hodgkin's lymphoma are given. Practical issues that are commonly encountered when implementing adaptive design methods in clinical trials are also discussed
    corecore