199 research outputs found

    Structure of neutron stars with unified equations of state

    Full text link
    We present a set of three unified equations of states (EoSs) based on the nuclear energy-density functional (EDF) theory.These EoSs are based on generalized Skyrme forces fitted to essentially all experimental atomic mass data and constrained to reproduce various properties of infinite nuclear matter as obtained from many-body calculations using realistic two- and three-body interactions. The structure of cold isolated neutron stars is discussed in connection with some astrophysical observations.Comment: 4 pages, to appear in the proceedings of the ERPM conference, Zielona Gora, Poland, April 201

    Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XI: Stabilizing neutron stars against a ferromagnetic collapse

    Full text link
    We construct a new Hartree-Fock-Bogoliubov (HFB) mass model, labeled HFB-18, with a generalized Skyrme force. The additional terms that we have introduced into the force are density-dependent generalizations of the usual t1t_1 and t2t_2 terms, and are chosen in such a way as to avoid the high-density ferromagnetic instability of neutron stars that is a general feature of conventional Skyrme forces, and in particular of the Skyrme forces underlying all the HFB mass models that we have developed in the past. The remaining parameters of the model are then fitted to essentially all the available mass data, an rms deviation σ\sigma of 0.585 MeV being obtained. The new model thus gives almost as good a mass fit as our best-fit model HFB-17 (σ\sigma = 0.581 MeV), and has the advantage of avoiding the ferromagnetic collapse of neutron stars.Comment: accepted for publication in Physical Review

    Neutron drip transition in accreting and nonaccreting neutron star crusts

    Full text link
    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density ρdrip\rho_\textrm{drip}. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.Comment: 24 pages, accepted for publication in Physical Review

    Symmetry energy: nuclear masses and neutron stars

    Full text link
    We describe the main features of our most recent Hartree-Fock-Bogoliubov nuclear mass models, based on 16-parameter generalized Skyrme forces. They have been fitted to the data of the 2012 Atomic Mass Evaluation, and favour a value of 30 MeV for the symmetry coefficient J, the corresponding root-mean square deviation being 0.549 MeV. We find that this conclusion is compatible with measurements of neutron-skin thickness. By constraining the underlying interactions to fit various equations of state of neutron matter calculated {\it ab initio} our models are well adapted to a realistic and unified treatment of all regions of neutron stars. We use our models to calculate the composition, the equation of state, the mass-radius relation and the maximum mass. Comparison with observations of neutron stars again favours a value of J = 30 MeV.Comment: 10 pages, 9 figures, to appear in EPJA special volume on symmetry energ

    Unified description of neutron superfluidity in the neutron-star crust with analogy to anisotropic multi-band BCS superconductors

    Full text link
    The neutron superfluidity in the inner crust of a neutron star has been traditionally studied considering either homogeneous neutron matter or only a small number of nucleons confined inside the spherical Wigner-Seitz cell. Drawing analogies with the recently discovered multi-band superconductors, we have solved the anisotropic multi-band BCS gap equations with Bloch boundary conditions, thus providing a unified description taking consistently into account both the free neutrons and the nuclear clusters. Calculations have been carried out using the effective interaction underlying our recent Hartree-Fock-Bogoliubov nuclear mass model HFB-16. We have found that even though the presence of inhomogeneities lowers the neutron pairing gaps, the reduction is much less than that predicted by previous calculations using the Wigner-Seitz approximation. We have studied the disappearance of superfluidity with increasing temperature. As an application we have calculated the neutron specific heat, which is an important ingredient for modeling the thermal evolution of newly-born neutron stars. This work provides a new scheme for realistic calculations of superfluidity in neutron-star crusts.Comment: 15 pages, 31 figures, accepted for publication in Physical Review

    Giant Pulsar Glitches and the Inertia of Neutron-Star Crusts

    Full text link
    Giant pulsar frequency glitches as detected in the emblematic Vela pulsar have long been thought to be the manifestation of a neutron superfluid permeating the inner crust of a neutron star. However, this superfluid has been recently found to be entrained by the crust, and as a consequence it does not carry enough angular momentum to explain giant glitches. The extent to which pulsar-timing observations can be reconciled with the standard vortex-mediated glitch theory is studied considering the current uncertainties on dense-matter properties. To this end, the crustal moment of inertia of glitching pulsars is calculated employing a series of different unified dense-matter equations of state.Comment: 11 pages, 6 figures, submitted to PR

    Finite-size effects and collective vibrations in the inner crust of neutron stars

    Full text link
    We study the linear response of the inner crust of neutron stars within the Random Phase Approximation, employing a Skyrme-type interaction as effective interaction. We adopt the Wigner-Seitz approximation, and consider a single unit cell of the Coulomb lattice which constitutes the inner crust, with a nucleus at its center, surrounded by a sea of free neutrons. With the use of an appropriate operator, it is possible to analyze in detail the properties of the vibrations of the surface of the nucleus and their interaction with the modes of the sea of free neutrons, and to investigate the role of shell effects and of resonant states

    Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: II Macroscopic treatment

    Full text link
    Phenomena such as pulsar frequency glitches are believed to be attributable to differential rotation of a current of ``free'' superfluid neutrons at densities above the ``drip'' threshold in the ionic crust of a neutron star. Such relative flow is shown to be locally describable by adaption of a canonical two fluid treatment that emphasizes the role of the momentum covectors constructed by differentiation of action with respect to the currents, with allowance for stratification whereby the ionic number current may be conserved even when the ionic charge number Z is altered by beta processes. It is demonstrated that the gauge freedom to make different choices of the chemical basis determining which neutrons are counted as ``free'' does not affect their ``superfluid'' momentum covector, which must locally have the form of a gradient (though it does affect the ``normal'' momentum covector characterising the protons and those neutrons that are considered to be ``confined'' in the nuclei). It is shown how the effect of ``entrainment'' (whereby the momentum directions deviate from those of the currents) is controlled by the (gauge independent) mobility coefficient K, estimated in recent microscopical quantum mechanical investigations, which suggest that the corresponding (gauge dependent) ``effective mass'' m* of the free neutrons can become very large in some layers. The relation between this treatment of the crust layers and related work (using different definitions of ``effective mass'') intended for the deeper core layers is discussed.Comment: 21 pages Latex. Part II of article whose Part I (Simple microscopic models) is given by nucl-th/0402057. New version extended to include figure

    Masses of neutron stars and nuclei

    Full text link
    We calculate the maximum mass of neutron stars for three different equations of state (EOS) based on generalized Skyrme functionals that are simultaneously fitted to essentially all the 2003 nuclear mass data (the rms deviation is 0.58 MeV in all three cases) and to one or other of three different equations of state of pure neutron matter, each determined by a different many-body calculation using realistic two- and three-body interactions but leading to significantly different degrees of stiffness at the high densities prevailing in neutron-star interiors. The observation of a neutron star with mass 1.97 ±\pm 0.04 M\mathcal{M}_{\odot} eliminates the softest of our models (BSk19), but does not discriminate between BSk20 and BSk21. However, nuclear-mass measurements that have been made since our models were constructed strongly favor BSk21, our stiffest functional.Comment: 11 pages, 4 figures; Physical Review C in pres
    corecore