1,680 research outputs found
Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures
In this paper, we address the problem of achieving efficient code-based
digital signatures with small public keys. The solution we propose exploits
sparse syndromes and randomly designed low-density generator matrix codes.
Based on our evaluations, the proposed scheme is able to outperform existing
solutions, permitting to achieve considerable security levels with very small
public keys.Comment: 16 pages. The final publication is available at springerlink.co
Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements
We introduce the problem of constructing weighted complex projective
2-designs from the union of a family of orthonormal bases. If the weight
remains constant across elements of the same basis, then such designs can be
interpreted as generalizations of complete sets of mutually unbiased bases,
being equivalent whenever the design is composed of d+1 bases in dimension d.
We show that, for the purpose of quantum state determination, these designs
specify an optimal collection of orthogonal measurements. Using highly
nonlinear functions on abelian groups, we construct explicit examples from d+2
orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10,
and 12, for example, where no complete sets of mutually unbiased bases have
thus far been found.Comment: 28 pages, to appear in J. Math. Phy
On the universality of small scale turbulence
The proposed universality of small scale turbulence is investigated for a set
of measurements in a cryogenic free jet with a variation of the Reynolds number
(Re) from 8500 to 10^6. The traditional analysis of the statistics of velocity
increments by means of structure functions or probability density functions is
replaced by a new method which is based on the theory of stochastic Markovian
processes. It gives access to a more complete characterization by means of
joint probabilities of finding velocity increments at several scales. Based on
this more precise method our results call in question the concept of
universality.Comment: 4 pages, 4 figure
Anticancer properties of chitosan on human melanoma are cell line dependent
Purpose: Chitosan, a natural macromolecule, is widely used in medical and pharmaceutical fields because
of its distinctive properties such as bactericide, fungicide and above all its antitumor effects. Although
its antitumor activity against different types of cancer had been previously described, its mechanism of
action was not fully understood.
Materials and methods: Coating of chitosan has been used in cell cultures with A375, SKMEL28, and
RPMI7951 cell lines. Adherence, proliferation and apoptosis were investigated.
Results: Our results revealed that whereas chitosan decreased adhesion of primary melanoma A375 cell
line and decreased proliferation of primary melanoma SKMEL28 cell line, it had potent pro-apoptotic
effects against RPMI7951, a metastatic melanoma cell line. In these latter cells, inhibition of specific
caspases confirmed that apoptosis was effected through the mitochondrial pathway and Western blot
analyses showed that chitosan induced an up regulation of pro-apoptotic molecules such as Bax and a
down regulation of anti-apoptotic proteins like Bcl-2 and Bcl-XL. More interestingly, chitosan exposure
induced an exposition of a greater number of CD95 receptor at RPMI7951 surface, making them more
susceptible to FasL-induced apoptosis.
Conclusion: Our results indicate that chitosan could be a promising agent for further evaluations in
antitumor treatments targeting melanoma
Amplitude analysis of reactions pi(-)p->etapi(-)p and pi(-)p->etapi(0)n on polarized target and the exotic 1-+ meson
Recently several experimental groups analysed data on and reactions with exotic -wave and
found a conflicting evidence for an exotic meson . High
statistics data on these reactions are presently analysed by BNL E852
Collaboration. All these analyses are based on the crucial assumption that the
production amplitudes do not depend on nucleon spin. This assumption is in
sharp conflict with the results of measurements of ,
and on polarized targets at
CERN which find a strong dependence of production amplitudes on nucleon spin.
To ascertain the existence of exotic meson , it is necessary to
perform a model-independent amplitude analysis of reactions and . We demonstrate that measurements of
these reactions on transversely polarized targets enable the required model
independent amplitude analysis without the assumption that production
amplitudes are independent on nucleon spin. We suggest that high statistics
measurements of reactions and be made on polarized targets at BNL and at Protvino IHEP, and that
model-independent amplitude analyses of this polarized data be performed to
advance hadron spectroscopy on the level of spin dependent production
amplitudes.Comment: 23 page
Pulmonary-Resident Memory Lymphocytes: Pivotal Orchestrators of Local Immunity Against Respiratory Infections
There is increasing evidence that lung-resident memory T and B cells play a critical role in protecting against respiratory reinfection. With a unique transcriptional and phenotypic profile, resident memory lymphocytes are maintained in a quiescent state, constantly surveying the lung for microbial intruders. Upon reactivation with cognate antigen, these cells provide rapid effector function to enhance immunity and prevent infection. Immunization strategies designed to induce their formation, alongside novel techniques enabling their detection, have the potential to accelerate and transform vaccine development. Despite most data originating from murine studies, this review will discuss recent insights into the generation, maintenance and characterisation of pulmonary resident memory lymphocytes in the context of respiratory infection and vaccination using recent findings from human and non-human primate studies
- …