4,916 research outputs found

    Minimal conductivity, topological Berry winding and duality in three-band semimetals

    Full text link
    The physics of massless relativistic quantum particles has recently arisen in the electronic properties of solids following the discovery of graphene. Around the accidental crossing of two energy bands, the electronic excitations are described by a Weyl equation initially derived for ultra-relativistic particles. Similar three and four band semimetals have recently been discovered in two and three dimensions. Among the remarkable features of graphene are the characterization of the band crossings by a topological Berry winding, leading to an anomalous quantum Hall effect, and a finite minimal conductivity at the band crossing while the electronic density vanishes. Here we show that these two properties are intimately related: this result paves the way to a direct measure of the topological nature of a semi-metal. By considering three band semimetals with a flat band in two dimensions, we find that only few of them support a topological Berry phase. The same semimetals are the only ones displaying a non vanishing minimal conductivity at the band crossing. The existence of both a minimal conductivity and a topological robustness originates from properties of the underlying lattice, which are encoded not by a symmetry of their Bloch Hamiltonian, but by a duality

    An exactly soluble noisy traveling wave equation appearing in the problem of directed polymers in a random medium

    Full text link
    We calculate exactly the velocity and diffusion constant of a microscopic stochastic model of NN evolving particles which can be described by a noisy traveling wave equation with a noise of order N1/2N^{-1/2}. Our model can be viewed as the infinite range limit of a directed polymer in random medium with NN sites in the transverse direction. Despite some peculiarities of the traveling wave equations in the absence of noise, our exact solution allows us to test the validity of a simple cutoff approximation and to show that, in the weak noise limit, the position of the front can be completely described by the effect of the noise on the first particle.Comment: 5 page

    Dynamics of two atoms undergoing light-assisted collisions in an optical microtrap

    Full text link
    We study the dynamics of atoms in optical traps when exposed to laser cooling light that induces light-assisted collisions. We experimentally prepare individual atom pairs and observe their evolution. Due to the simplicity of the system (just two atoms in a microtrap) we can directly simulate the pair's dynamics, thereby revealing detailed insight into it. We find that often only one of the collision partners gets expelled, similar to when using blue detuned light for inducing the collisions. This enhances schemes for using light-assisted collisions to prepare individual atoms and affects other applications as well

    A phenomenological theory giving the full statistics of the position of fluctuating pulled fronts

    Full text link
    We propose a phenomenological description for the effect of a weak noise on the position of a front described by the Fisher-Kolmogorov-Petrovsky-Piscounov equation or any other travelling wave equation in the same class. Our scenario is based on four hypotheses on the relevant mechanism for the diffusion of the front. Our parameter-free analytical predictions for the velocity of the front, its diffusion constant and higher cumulants of its position agree with numerical simulations.Comment: 10 pages, 3 figure

    Integrability of Dirac reduced bi-Hamiltonian equations

    Full text link
    First, we give a brief review of the theory of the Lenard-Magri scheme for a non-local bi-Poisson structure and of the theory of Dirac reduction. These theories are used in the remainder of the paper to prove integrability of three hierarchies of bi-Hamiltonian PDE's, obtained by Dirac reduction from some generalized Drinfeld-Sokolov hierarchies.Comment: 15 pages. Corrected some typos and added missing equations in Section 5 for g=sl_n, n>

    Rational matrix pseudodifferential operators

    Get PDF
    The skewfield K(d) of rational pseudodifferential operators over a differential field K is the skewfield of fractions of the algebra of differential operators K[d]. In our previous paper we showed that any H from K(d) has a minimal fractional decomposition H=AB^(-1), where A,B are elements of K[d], B is non-zero, and any common right divisor of A and B is a non-zero element of K. Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-zero element of K[d]. In the present paper we study the ring M_n(K(d)) of nxn matrices over the skewfield K(d). We show that similarly, any H from M_n(K(d)) has a minimal fractional decomposition H=AB^(-1), where A,B are elements of M_n(K[d]), B is non-degenerate, and any common right divisor of A and B is an invertible element of the ring M_n(K[d]). Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-degenerate element of M_n(K [d]). We give several equivalent definitions of the minimal fractional decomposition. These results are applied to the study of maximal isotropicity property, used in the theory of Dirac structures.Comment: 20 page
    corecore