167 research outputs found

    Portfolio Structuring Model for Urban Infrastructure Investments

    Get PDF
    The objective of this work is to propose a new methodology based on the concept of portfolio structuring for urban infrastructure investment. We argue that city investments need to be treated as an integrated and interdependent entity and from this perspective, the portfolio methodology is proposed in order to assess the non-financial impacts of infrastructure projects and then combine them in a portfolio of investments from a financial perspective. The methodology is applied for a set of project under the EIB JESSICA Initiative. The methodology shows that not only is it possible to develop a practical decision support system to assist stakeholders in assessing the performance of individual urban infrastructure projects, but also how it is possible to combine projects into a portfolio. The method exceeds the simple analysis of returns of individual investment schemes and capitalizes on effective and integrated management of projects/investment. And this is the key to devising a focused response which will enable therefore cities to be globally competitive, via innovative financial and business models

    Trapped surfaces and emergent curved space in the Bose-Hubbard model

    Get PDF
    A Bose-Hubbard model on a dynamical lattice was introduced in previous work as a spin system analogue of emergent geometry and gravity. Graphs with regions of high connectivity in the lattice were identified as candidate analogues of spacetime geometries that contain trapped surfaces. We carry out a detailed study of these systems and show explicitly that the highly connected subgraphs trap matter. We do this by solving the model in the limit of no back-reaction of the matter on the lattice, and for states with certain symmetries that are natural for our problem. We find that in this case the problem reduces to a one-dimensional Hubbard model on a lattice with variable vertex degree and multiple edges between the same two vertices. In addition, we obtain a (discrete) differential equation for the evolution of the probability density of particles which is closed in the classical regime. This is a wave equation in which the vertex degree is related to the local speed of propagation of probability. This allows an interpretation of the probability density of particles similar to that in analogue gravity systems: matter inside this analogue system sees a curved spacetime. We verify our analytic results by numerical simulations. Finally, we analyze the dependence of localization on a gradual, rather than abrupt, falloff of the vertex degree on the boundary of the highly connected region and find that matter is localized in and around that region

    Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime

    Get PDF
    We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties; instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model

    Gravity from the entropy of light

    Full text link
    The holographic principle, considered in a semiclassical setting, is shown to have direct consequences on physics at a fundamental level. In particular, a certain relation is pointed out to be the expression of holography in basic thermodynamics. It is argued moreover that through this relation holography can be recognized to induce gravity, and an expression for the gravitational lensing is obtained in terms of entropy over wavelength of black-body radiation, or, at a deeper level, in terms of maximum entropy over associated space to the elementary bit of information.Comment: 7 pages; v2: completion of the list of references; v3: the discussion is divided in Sections and the argument is described in more detail; v4: a statement is added (below eq.13) on what is the supposed difference between Jacobson's work in ref.21 and this attempt; addition of a paragraph in last Sectio

    Rotation and twist regular modes for trapped ghosts

    Full text link
    A parameter-independent notion of stationary slow motion is formulated then applied to the case of stationary rotation of massless trapped ghosts. The excitations correspond to a rotation mode with angular momentum J≠0J\neq 0 and twist modes. It is found that the rotation mode, which has no parity, causes excess in the angular velocity of dragged distant coordinate frames in one sheet of the wormhole while in the other sheet the angular velocity of the ghosts is that of rotating stars: 2J/r32J/r^3. As to the twist modes, which all have parity, they cause excess in the angular velocity of one of the throat's poles with respect to the other.Comment: 11 pages, 3 figures; General Relativity and Gravitation - 201

    Weight bearing versus conventional CT for the measurement of patellar alignment and stability in patients after surgical treatment for patellar recurrent dislocation

    Get PDF
    Purpose: To compare weight-bearing cone-beam computer tomography (CBCT) and conventional computer tomography (CT)-based measurements of patellofemoral alignment and stability in patients surgically treated for recurrent patellar dislocation. These scans implied respectively single-leg up-right posture, the knee flexed, and lower limb muscles activation, versus supine position with the knee extended. Methods: A total of 17 patients (11 males/6 females) after surgical reconstruction with fascia lata allograft for recurrent patellofemoral dislocation were analyzed at 60-month follow-up. Tilt and congruence angles and tibial tuberosity–trochlear groove (TT-TG) offset were measured on images obtained from CBCT and conventional CT scans by three independent and expert radiologists. Paired t tests were performed to compare measurements obtained from the two scans. Inter-rater reliability was assessed using a two-way mixed-effects model intra-class correlation coefficient (ICC). Results: Only TT-TG offset was found significantly smaller (p < 0.001) in CBCT (mean 9.9 ± 5.3 mm) than in conventional CT (mean 15.9 ± 4.9 mm) scans. ICC for tilt and congruence angles and for TT-TG offset ranged between 0.80–0.94 with measurements in CBCT scans, between 0.52 and0.78 in conventional CT. Conclusion: In patients surgically treated for recurrent patellar dislocation, TT-TG offset was found overestimated with conventional CT. All measurements of patellofemoral stability and alignment were found more consistent when obtained with weight-bearing CBCT compared to conventional CT

    A Note on Temperature and Energy of 4-dimensional Black Holes from Entropic Force

    Full text link
    We investigate the temperature and energy on holographic screens for 4-dimensional black holes with the entropic force idea proposed by Verlinde. We find that the "Unruh-Verlinde temperature" is equal to the Hawking temperature on the horizon and can be considered as a generalized Hawking temperature on the holographic screen outside the horizons. The energy on the holographic screen is not the black hole mass MM but the reduced mass M0M_0, which is related to the black hole parameters. With the replacement of the black hole mass MM by the reduced mass M0M_0, the entropic force can be written as F=GmM0r2F=\frac{GmM_0}{r^2}, which could be tested by experiments.Comment: V4: 13 pages, 4 figures, title changed, discussions for experiments added, accepted by CQ

    Spinning Loop Black Holes

    Full text link
    In this paper we construct four Kerr-like spacetimes starting from the loop black hole Schwarzschild solutions (LBH) and applying the Newman-Janis transformation. In previous papers the Schwarzschild LBH was obtained replacing the Ashtekar connection with holonomies on a particular graph in a minisuperspace approximation which describes the black hole interior. Starting from this solution, we use a Newman-Janis transformation and we specialize to two different and natural complexifications inspired from the complexifications of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that the space-times obtained in this way are singularity free and thus there are no naked singularities. We show that the transformation move, if any, the causality violating regions of the Kerr metric far from r=0. We study the space-time structure with particular attention to the horizons shape. We conclude the paper with a discussion on a regular Reissner-Nordstrom black hole derived from the Schwarzschild LBH and then applying again the Newmann-Janis transformation.Comment: 18 pages, 18 figure
    • …
    corecore