66,456 research outputs found

    The unique rapid variabilities of the iron Kα\alpha line profiles in NGC 4151

    Full text link
    We present a detailed analysis of the iron Kα\alpha line variabilities in NGC 4151 by using long ASCA observation data obtained in May 1995. Despite the relatively small amplitude variations in the continuum flux, the iron Kα\alpha line flux and profile show dramatic variations. Particularly, the line profile changes from single peak to seeming double peaks and back in time scales of a few 104^4 sec. The seemingly double-peaked profiles can be well interpreted as line emission from a Keplerian ring around a massive black hole. An absorption line at around 5.9 keV is also marginnaly detected. We discussed current Fe K line models, but none of them can well explain the observed line and continuum variations.Comment: 18 pages, latex, 3 figures, ApJ accepte

    Entanglement reciprocation using three level atoms in a lambda configuration

    Full text link
    We propose a scheme in which entanglement can be transferred from atoms (discrete variables) to entangled states of cavity fields (continuous variables). The cavities play the role of a kind of quantum memory for entanglement, in such a way that it is possible to retrieve it back to the atoms. In our method, two three level atoms in a lambda configuration, previously entangled, are set to interact with single mode cavity fields prepared in coherent states. During the process, one e-bit of entanglement may be deposited in the cavities in an efficient way. We also show that the stored entanglement may be transferred back to flying atoms

    The broad Fe K line profile in NGC 4151

    Get PDF
    We present an analysis of the Fe K line profile of NGC 4151 by using long ASCA observation data obtained in May 1995. The unprecedented good data quality, which is much better in the energy band around 6.4 keV than that of the famous 4.2-day ASCA observation of MCG -6-30-15 in July 1994, offers a unique opportunity to study the details of Fe K line profile. Apart from those characteristics already noticed in earlier ASCA observations on this object (Yaqoob et al. 1995): a broad and skewed profile, with a strong peak at about 6.4 keV and a large red wing extending to ∌\sim4 - 5 keV, which is remarkably similar to that of MCG -6-30-15, we also find a weak blue wing extending to about 8 keV, thanks to the good quality of the data. When fitted by a relativistic accretion disk line plus a narrow core at 6.4 keV, the data constrain the accretion disk to be nearly face-on, contrary to the edge-on geometry inferred from optical and UV observations. However, the extended blue wing can not be well fitted even after we include corresponding Fe KÎČ\beta components. Ni Kα\alpha line emission by an amount of 12% of Fe Kα\alpha is statistically required. An alternative explanation is a model consisting of a narrow core and two disk lines with inclinations of 58o^{\rm o} and 0o^{\rm o}, respectively. We suppose that the component with inclination of 58o^{\rm o} was observed directly, consistent with its edge-on geometry, and the component with inclination of 0o^{\rm o} was scattered into our line of sight by a Compton mirror, which might be the cool accretion disk corona proposed by Poutanen et al. (1996).Comment: 15 pages, including 2 figures, aasms4.sty. To appear in ApJL 52

    Entanglement in spin-one Heisenberg chains

    Full text link
    By using the concept of negativity, we study entanglement in spin-one Heisenberg chains. Both the bilinear chain and the bilinear-biquadratic chain are considered. Due to the SU(2) symmetry, the negativity can be determined by two correlators, which greatly facilitate the study of entanglement properties. Analytical results of negativity are obtained in the bilinear model up to four spins and the two-spin bilinear-biquadratic model, and numerical results of negativity are presented. We determine the threshold temperature before which the thermal state is doomed to be entangled.Comment: 7 pages and 4 figure

    Rapidly variable Fe Kα\alpha line in NGC 4051

    Full text link
    We present a detailed analysis on the variability of the Fe K emission line in NGC 4051 using ASCA data. Through simple Gaussian line fits, we find not only obvious Fe K line variability with no significant difference in the X-ray continuum flux between two ASCA observations which were separated by ∌\sim 440 days, but also rapid variability of Fe K line on time scales ∌104\sim 10^4 s within the second observation. During the second observation, the line is strong (EW = 733−219+206^{+206}_{-219} eV) and broad (σ=0.96−0.35+0.49\sigma = 0.96^{+0.49}_{-0.35} keV) when the source is brightest, and become weaker (EW = 165−86+87^{+87}_{-86} eV) and narrower (σ<0.09\sigma<0.09 keV) whilst the source is weakest. The equivalent width of Fe K line correlates positively with the continuum flux, which shows an opposite trend with another Seyfert 1 galaxy MCG --6-30-15.Comment: 12 pages with 5 figures, to appear in ApJ Vol. 516, L6

    Quasiparticle Scattering Interference in (K,Tl)FexSe2 Superconductors

    Full text link
    We model the quasiparticle interference (QPI) pattern in the recently discovered (K,Tl)Fe_xSe2 superconductors. We show in the superconducting state that, due to the absence of hole pockets at the Brillouin zone center, the quasiparticle scattering occurs around the momentum transfer q=(0,0) and (\pm \pi, \pm \pi) between electron pockets located at the zone boundary. More importantly, although both d_{x^2-y^2}-wave and s-wave pairing symmetry lead to nodeless quasiparticle excitations, distinct QPI features are predicted between both types of pairing symmetry. In the presence of a nonmagnetic impurity scattering, the QPI exhibits strongest scattering with q=(\pm \pi, \pm \pi) for the d_{x^2-y^2}-wave pairing symmetry; while the strongest scattering exhibits a ring-like structure centered around both q=(0,0) and (\pm \pi, \pm \pi) for the isotropic s-wave pairing symmetry. A unique QPI pattern has also been predicted due to a local pair-potential-type impurity scattering. The significant contrast in the QPI pattern between the d_{x^2-y^2}-wave and the isotropic s-wave pairing symmetry can be used to probe the pairing symmetry within the Fourier-transform STM technique.Comment: 4+ pages, 3 embedded eps figure

    Multistage Random Growing Small-World Networks with Power-law degree Distribution

    Full text link
    In this paper, a simply rule that generates scale-free networks with very large clustering coefficient and very small average distance is presented. These networks are called {\bf Multistage Random Growing Networks}(MRGN) as the adding process of a new node to the network is composed of two stages. The analytic results of power-law exponent Îł=3\gamma=3 and clustering coefficient C=0.81C=0.81 are obtained, which agree with the simulation results approximately. In addition, the average distance of the networks increases logarithmical with the number of the network vertices is proved analytically. Since many real-life networks are both scale-free and small-world networks, MRGN may perform well in mimicking reality.Comment: 3 figures, 4 page

    Instability of two dimensional graphene: Breaking sp2 bonds with soft X-rays

    Full text link
    We study the stability of various kinds of graphene samples under soft X-ray irradiation. Our results show that in single layer exfoliated graphene (a closer analogue to two dimensional material), the in-plane carbon-carbon bonds are unstable under X-ray irradiation, resulting in nanocrystalline structures. As the interaction along the third dimension increases by increasing the number of graphene layers or through the interaction with the substrate (epitaxial graphene), the effect of X-ray irradiation decreases and eventually becomes negligible for graphite and epitaxial graphene. Our results demonstrate the importance of the interaction along the third dimension in stabilizing the long range in-plane carbon-carbon bonding, and suggest the possibility of using X-ray to pattern graphene nanostructures in exfoliated graphene.Comment: 4 pages, 3 figures, Phys. Rev. B rapid communication, in pres

    A Framework of Robust Transmission Design for IRS-Aided MISO Communications With Imperfect Cascaded Channels

    Get PDF
    Intelligent reflection surface (IRS) has recently been recognized as a promising technique to enhance the performance of wireless systems due to its ability of reconfiguring the signal propagation environment. However, the perfect channel state information (CSI) is challenging to obtain at the base station (BS) due to the lack of radio frequency (RF) chains at the IRS. Since most of the existing channel estimation methods were developed to acquire the cascaded BS-IRS-user channels, this paper is the first work to study the robust beamforming based on the imperfect cascaded BS-IRS-user channels at the transmitter (CBIUT). Specifically, the transmit power minimization problems are formulated subject to the worst-case rate constraints under the bounded CSI error model and the rate outage probability constraints under the statistical CSI error model, respectively. After approximating the worst-case rate constraints by using the S-procedure and the rate outage probability constraints by using the Bernstein-type inequality, the reformulated problems can be efficiently solved. Numerical results show that the negative impact of the CBIUT error on the system performance is greater than that of the direct CSI error.Comment: Accepted in IEEE Transactions on Signal Processing. Keywords: Intelligent reflecting surface (IRS), reconfigurable intelligent surface (RIS), robust transmission desig
    • 

    corecore