5,890 research outputs found
Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data
We describe a procedure to identify and remove a class of non-stationary and
non-harmonic interference lines from gravitational wave interferometer data.
These lines appear to be associated with the external electricity main
supply, but their amplitudes are non-stationary and they do not appear at
harmonics of the fundamental supply frequency. We find an empirical model able
to represent coherently all the non-harmonic lines we have found in the power
spectrum, in terms of an assumed reference signal of the primary supply input
signal. If this signal is not available then it can be reconstructed from the
same data by making use of the coherent line removal algorithm that we have
described elsewhere. All these lines are broadened by frequency changes of the
supply signal, and they corrupt significant frequency ranges of the power
spectrum. The physical process that generates this interference is so far
unknown, but it is highly non-linear and non-stationary. Using our model, we
cancel the interference in the time domain by an adaptive procedure that should
work regardless of the source of the primary interference. We have applied the
method to laser interferometer data from the Glasgow prototype detector, where
all the features we describe in this paper were observed. The algorithm has
been tuned in such a way that the entire series of wide lines corresponding to
the electrical interference are removed, leaving the spectrum clean enough to
detect signals previously masked by them. Single-line signals buried in the
interference can be recovered with at least 75 % of their original signal
amplitude.Comment: 14 pages, 5 figures, Revtex, psfi
A new numerical method to construct binary neutron star initial data
We present a new numerical method for the generation of binary neutron star
initial data using a method along the lines of the the Wilson-Mathews or the
closely related conformal thin sandwich approach. Our method uses six different
computational domains, which include spatial infinity. Each domain has its own
coordinates which are chosen such that the star surfaces always coincide with
domain boundaries. These properties facilitate the imposition of boundary
conditions. Since all our fields are smooth inside each domain, we are able to
use an efficient pseudospectral method to solve the elliptic equations
associated with the conformal thin sandwich approach. Currently we have
implemented corotating configurations with arbitrary mass ratios, but an
extension to arbitrary spins is possible. The main purpose of this paper is to
introduce our new method and to test our code for several different
configurations.Comment: 18 pages, 8 figures, 1 tabl
Functional Sequential Treatment Allocation
Consider a setting in which a policy maker assigns subjects to treatments,
observing each outcome before the next subject arrives. Initially, it is
unknown which treatment is best, but the sequential nature of the problem
permits learning about the effectiveness of the treatments. While the
multi-armed-bandit literature has shed much light on the situation when the
policy maker compares the effectiveness of the treatments through their mean,
much less is known about other targets. This is restrictive, because a cautious
decision maker may prefer to target a robust location measure such as a
quantile or a trimmed mean. Furthermore, socio-economic decision making often
requires targeting purpose specific characteristics of the outcome
distribution, such as its inherent degree of inequality, welfare or poverty. In
the present paper we introduce and study sequential learning algorithms when
the distributional characteristic of interest is a general functional of the
outcome distribution. Minimax expected regret optimality results are obtained
within the subclass of explore-then-commit policies, and for the unrestricted
class of all policies
Does Quantum Cosmology Predict a Constant Dilatonic Field?
Quantum cosmology may permit to determine the initial conditions of the
Universe. In particular, it may select a specific model between many possible
classical models. In this work, we study a quantum cosmological model based on
the string effective action coupled to matter. The Schutz's formalism is
employed in the description of the fluid. A radiation fluid is considered. In
this way, a time coordinate may be identified and the Wheeler-DeWitt equation
reduces in the minisuperspace to a Schr\"odinger-like equation. It is shown
that, under some quite natural assumptions, the expectation values indicate a
null axionic field and a constant dilatonic field. At the same time the scale
factor exhibits a bounce revealing a singularity-free cosmological model. In
some cases, the mininum value of the scale factor can be related to the value
of gravitational coupling.Comment: Latex file, 14 page
Angular Resolution of the LISA Gravitational Wave Detector
We calculate the angular resolution of the planned LISA detector, a
space-based laser interferometer for measuring low-frequency gravitational
waves from galactic and extragalactic sources. LISA is not a pointed
instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will
measure simultaneously both polarization components of incoming gravitational
waves, so the data will consist of two time series. All physical properties of
the source, including its position, must be extracted from these time series.
LISA's angular resolution is therefore not a fixed quantity, but rather depends
on the type of signal and on how much other information must be extracted.
Information about the source position will be encoded in the measured signal in
three ways: 1) through the relative amplitudes and phases of the two
polarization components, 2) through the periodic Doppler shift imposed on the
signal by the detector's motion around the Sun, and 3) through the further
modulation of the signal caused by the detector's time-varying orientation. We
derive the basic formulae required to calculate the LISA's angular resolution
for a given source. We then evaluate for
two sources of particular interest: monchromatic sources and mergers of
supermassive black holes. For these two types of sources, we calculate (in the
high signal-to-noise approximation) the full variance-covariance matrix, which
gives the accuracy to which all source parameters can be measured. Since our
results on LISA's angular resolution depend mainly on gross features of the
detector geometry, orbit, and noise curve, we expect these results to be fairly
insensitive to modest changes in detector design that may occur between now and
launch. We also expect that our calculations could be easily modified to apply
to a modified design.Comment: 15 pages, 5 figures, RevTex 3.0 fil
Gravitational Waves from Mergin Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Waveform?
The most promising source of gravitational waves for the planned detectors
LIGO and VIRGO are merging compact binaries, i.e., neutron star/neutron star
(NS/NS), neutron star/black hole (NS/BH), and black hole/black-hole (BH/BH)
binaries. We investigate how accurately the distance to the source and the
masses and spins of the two bodies will be measured from the gravitational wave
signals by the three detector LIGO/VIRGO network using ``advanced detectors''
(those present a few years after initial operation). The combination of the masses of the two bodies is
measurable with an accuracy . The reduced mass is measurable
to for NS/NS and NS/BH binaries, and for BH/BH
binaries (assuming BH's). Measurements of the masses and spins are
strongly correlated; there is a combination of and the spin angular
momenta that is measured to within . We also estimate that distance
measurement accuracies will be for of the detected
signals, and for of the signals, for the LIGO/VIRGO
3-detector network.Comment: 103 pages, 20 figures, submitted to Phys Rev D, uses revtex macros,
Caltech preprint GRP-36
Quantum cosmological perfect fluid model and its classical analogue
The quantization of gravity coupled to a perfect fluid model leads to a
Schr\"odinger-like equation, where the matter variable plays the role of time.
The wave function can be determined, in the flat case, for an arbitrary
barotropic equation of state ; solutions can also be found for
the radiative non-flat case. The wave packets are constructed, from which the
expectation value for the scale factor is determined. The quantum scenarios
reveal a bouncing Universe, free from singularity. We show that such quantum
cosmological perfect fluid models admit a universal classical analogue,
represented by the addition, to the ordinary classical model, of a repulsive
stiff matter fluid. The meaning of the existence of this universal classical
analogue is discussed. The quantum cosmological perfect fluid model is, for a
flat spatial section, formally equivalent to a free particle in ordinary
quantum mechanics, for any value of , while the radiative non-flat case
is equivalent to the harmonic oscillator. The repulsive fluid needed to
reproduce the quantum results is the same in both cases.Comment: Latex file, 13 page
Gravitational Waves from coalescing binaries: Estimation of parameters
The paper presents a statistical model which reproduces the results of Monte
Carlo simulations to estimate the parameters of the gravitational wave signal
from a coalesing binary system. The model however is quite general and would be
useful in other parameter estimation problems.Comment: LaTeX with RevTeX macros, 4 figure
Optimal Strategies for Sinusoidal Signal Detection
We derive and study optimal and nearly-optimal strategies for the detection
of sinusoidal signals hidden in additive (Gaussian and non-Gaussian) noise.
Such strategies are an essential part of algorithms for the detection of the
gravitational Continuous Wave
(CW) signals produced by pulsars. Optimal strategies are derived for the case
where the signal phase is not known and the product of the signal frequency and
the observation time is non-integral.Comment: 18 pages, REVTEX4, 7 figures, 2 table
BRST operator quantization of generally covariant gauge systems
The BRST generator is realized as a Hermitian nilpotent operator for a
finite-dimensional gauge system featuring a quadratic super-Hamiltonian and
linear supermomentum constraints. As a result, the emerging ordering for the
Hamiltonian constraint is not trivial, because the potential must enter the
kinetic term in order to obtain a quantization invariant under scaling. Namely,
BRST quantization does not lead to the curvature term used in the literature as
a means to get that invariance. The inclusion of the potential in the kinetic
term, far from being unnatural, is beautifully justified in light of the
Jacobi's principle.Comment: 16 pages (LaTeX manuscript). Revised version (minor changes) to
appear in Physical Review
- …