5,890 research outputs found

    Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data

    Get PDF
    We describe a procedure to identify and remove a class of non-stationary and non-harmonic interference lines from gravitational wave interferometer data. These lines appear to be associated with the external electricity main supply, but their amplitudes are non-stationary and they do not appear at harmonics of the fundamental supply frequency. We find an empirical model able to represent coherently all the non-harmonic lines we have found in the power spectrum, in terms of an assumed reference signal of the primary supply input signal. If this signal is not available then it can be reconstructed from the same data by making use of the coherent line removal algorithm that we have described elsewhere. All these lines are broadened by frequency changes of the supply signal, and they corrupt significant frequency ranges of the power spectrum. The physical process that generates this interference is so far unknown, but it is highly non-linear and non-stationary. Using our model, we cancel the interference in the time domain by an adaptive procedure that should work regardless of the source of the primary interference. We have applied the method to laser interferometer data from the Glasgow prototype detector, where all the features we describe in this paper were observed. The algorithm has been tuned in such a way that the entire series of wide lines corresponding to the electrical interference are removed, leaving the spectrum clean enough to detect signals previously masked by them. Single-line signals buried in the interference can be recovered with at least 75 % of their original signal amplitude.Comment: 14 pages, 5 figures, Revtex, psfi

    A new numerical method to construct binary neutron star initial data

    Full text link
    We present a new numerical method for the generation of binary neutron star initial data using a method along the lines of the the Wilson-Mathews or the closely related conformal thin sandwich approach. Our method uses six different computational domains, which include spatial infinity. Each domain has its own coordinates which are chosen such that the star surfaces always coincide with domain boundaries. These properties facilitate the imposition of boundary conditions. Since all our fields are smooth inside each domain, we are able to use an efficient pseudospectral method to solve the elliptic equations associated with the conformal thin sandwich approach. Currently we have implemented corotating configurations with arbitrary mass ratios, but an extension to arbitrary spins is possible. The main purpose of this paper is to introduce our new method and to test our code for several different configurations.Comment: 18 pages, 8 figures, 1 tabl

    Functional Sequential Treatment Allocation

    Full text link
    Consider a setting in which a policy maker assigns subjects to treatments, observing each outcome before the next subject arrives. Initially, it is unknown which treatment is best, but the sequential nature of the problem permits learning about the effectiveness of the treatments. While the multi-armed-bandit literature has shed much light on the situation when the policy maker compares the effectiveness of the treatments through their mean, much less is known about other targets. This is restrictive, because a cautious decision maker may prefer to target a robust location measure such as a quantile or a trimmed mean. Furthermore, socio-economic decision making often requires targeting purpose specific characteristics of the outcome distribution, such as its inherent degree of inequality, welfare or poverty. In the present paper we introduce and study sequential learning algorithms when the distributional characteristic of interest is a general functional of the outcome distribution. Minimax expected regret optimality results are obtained within the subclass of explore-then-commit policies, and for the unrestricted class of all policies

    Does Quantum Cosmology Predict a Constant Dilatonic Field?

    Full text link
    Quantum cosmology may permit to determine the initial conditions of the Universe. In particular, it may select a specific model between many possible classical models. In this work, we study a quantum cosmological model based on the string effective action coupled to matter. The Schutz's formalism is employed in the description of the fluid. A radiation fluid is considered. In this way, a time coordinate may be identified and the Wheeler-DeWitt equation reduces in the minisuperspace to a Schr\"odinger-like equation. It is shown that, under some quite natural assumptions, the expectation values indicate a null axionic field and a constant dilatonic field. At the same time the scale factor exhibits a bounce revealing a singularity-free cosmological model. In some cases, the mininum value of the scale factor can be related to the value of gravitational coupling.Comment: Latex file, 14 page

    Angular Resolution of the LISA Gravitational Wave Detector

    Get PDF
    We calculate the angular resolution of the planned LISA detector, a space-based laser interferometer for measuring low-frequency gravitational waves from galactic and extragalactic sources. LISA is not a pointed instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will measure simultaneously both polarization components of incoming gravitational waves, so the data will consist of two time series. All physical properties of the source, including its position, must be extracted from these time series. LISA's angular resolution is therefore not a fixed quantity, but rather depends on the type of signal and on how much other information must be extracted. Information about the source position will be encoded in the measured signal in three ways: 1) through the relative amplitudes and phases of the two polarization components, 2) through the periodic Doppler shift imposed on the signal by the detector's motion around the Sun, and 3) through the further modulation of the signal caused by the detector's time-varying orientation. We derive the basic formulae required to calculate the LISA's angular resolution ΔΩS\Delta \Omega_S for a given source. We then evaluate ΔΩS\Delta \Omega_S for two sources of particular interest: monchromatic sources and mergers of supermassive black holes. For these two types of sources, we calculate (in the high signal-to-noise approximation) the full variance-covariance matrix, which gives the accuracy to which all source parameters can be measured. Since our results on LISA's angular resolution depend mainly on gross features of the detector geometry, orbit, and noise curve, we expect these results to be fairly insensitive to modest changes in detector design that may occur between now and launch. We also expect that our calculations could be easily modified to apply to a modified design.Comment: 15 pages, 5 figures, RevTex 3.0 fil

    Gravitational Waves from Mergin Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Waveform?

    Full text link
    The most promising source of gravitational waves for the planned detectors LIGO and VIRGO are merging compact binaries, i.e., neutron star/neutron star (NS/NS), neutron star/black hole (NS/BH), and black hole/black-hole (BH/BH) binaries. We investigate how accurately the distance to the source and the masses and spins of the two bodies will be measured from the gravitational wave signals by the three detector LIGO/VIRGO network using ``advanced detectors'' (those present a few years after initial operation). The combination M(M1M2)3/5(M1+M2)1/5{\cal M} \equiv (M_1 M_2)^{3/5}(M_1 +M_2)^{-1/5} of the masses of the two bodies is measurable with an accuracy 0.1%1%\approx 0.1\%-1\%. The reduced mass is measurable to 10%15%\sim 10\%-15\% for NS/NS and NS/BH binaries, and 50%\sim 50\% for BH/BH binaries (assuming 10M10M_\odot BH's). Measurements of the masses and spins are strongly correlated; there is a combination of μ\mu and the spin angular momenta that is measured to within 1%\sim 1\%. We also estimate that distance measurement accuracies will be 15%\le 15\% for 8%\sim 8\% of the detected signals, and 30%\le 30\% for 60%\sim 60\% of the signals, for the LIGO/VIRGO 3-detector network.Comment: 103 pages, 20 figures, submitted to Phys Rev D, uses revtex macros, Caltech preprint GRP-36

    Quantum cosmological perfect fluid model and its classical analogue

    Get PDF
    The quantization of gravity coupled to a perfect fluid model leads to a Schr\"odinger-like equation, where the matter variable plays the role of time. The wave function can be determined, in the flat case, for an arbitrary barotropic equation of state p=αρp = \alpha\rho; solutions can also be found for the radiative non-flat case. The wave packets are constructed, from which the expectation value for the scale factor is determined. The quantum scenarios reveal a bouncing Universe, free from singularity. We show that such quantum cosmological perfect fluid models admit a universal classical analogue, represented by the addition, to the ordinary classical model, of a repulsive stiff matter fluid. The meaning of the existence of this universal classical analogue is discussed. The quantum cosmological perfect fluid model is, for a flat spatial section, formally equivalent to a free particle in ordinary quantum mechanics, for any value of α\alpha, while the radiative non-flat case is equivalent to the harmonic oscillator. The repulsive fluid needed to reproduce the quantum results is the same in both cases.Comment: Latex file, 13 page

    Gravitational Waves from coalescing binaries: Estimation of parameters

    Full text link
    The paper presents a statistical model which reproduces the results of Monte Carlo simulations to estimate the parameters of the gravitational wave signal from a coalesing binary system. The model however is quite general and would be useful in other parameter estimation problems.Comment: LaTeX with RevTeX macros, 4 figure

    Optimal Strategies for Sinusoidal Signal Detection

    Get PDF
    We derive and study optimal and nearly-optimal strategies for the detection of sinusoidal signals hidden in additive (Gaussian and non-Gaussian) noise. Such strategies are an essential part of algorithms for the detection of the gravitational Continuous Wave (CW) signals produced by pulsars. Optimal strategies are derived for the case where the signal phase is not known and the product of the signal frequency and the observation time is non-integral.Comment: 18 pages, REVTEX4, 7 figures, 2 table

    BRST operator quantization of generally covariant gauge systems

    Full text link
    The BRST generator is realized as a Hermitian nilpotent operator for a finite-dimensional gauge system featuring a quadratic super-Hamiltonian and linear supermomentum constraints. As a result, the emerging ordering for the Hamiltonian constraint is not trivial, because the potential must enter the kinetic term in order to obtain a quantization invariant under scaling. Namely, BRST quantization does not lead to the curvature term used in the literature as a means to get that invariance. The inclusion of the potential in the kinetic term, far from being unnatural, is beautifully justified in light of the Jacobi's principle.Comment: 16 pages (LaTeX manuscript). Revised version (minor changes) to appear in Physical Review
    corecore