53 research outputs found

    Inhibition of Orobanche crenata Seed Germination and Radicle Growth by Allelochemicals Identified in Cereals

    Full text link
    Orobanche crenata is a parasitic weed that causes severe yield losses in important grain and forage legume crops. Cereals have been reported to inhibit O. crenata parasitism when grown intercropped with susceptible legumes, but the responsible metabolites have not been identified. A number of metabolites have been reported in cereals that have allelopathic properties against weeds, pests, and pathogens. We tested the effect of several allelochemicals identified in cereals on O. crenata seed germination and radicle development. We found that 2-benzoxazolinone, its derivative 6-chloroacetyl-2-benzoxazolinone, and scopoletin significantly inhibited O. crenata seed germination. Benzoxazolinones, l-tryptophan, and coumalic acid caused the stronger inhibition of radicle growth. Also, other metabolites reduced radicle length, this inhibition being dose-dependent. Only scopoletin caused cell necrotic-like darkening in the young radicles. Prospects for their application to parasitic weed management are discussed. © 2013 American Chemical Society.This research is supported by projects FP7-ARIMNet-MEDILEG and AGL2011-22524 (cofinanced by FEDER funds).Peer Reviewe

    Authentic processing and targeting of active maize auxin-binding protein in the baculovirus expression system.

    No full text
    The major auxin-binding protein (ABP1) from maize (Zea mays L.) has been expressed in insect cells using the baculovirus expression system. The recombinant protein can be readily detected in total insect cell lysates by Coomassie blue staining on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Our data suggest that ABP1 is processed similarly in both insect cells and maize. The signal peptide is cleaved at the same position as in maize and the mature protein undergoes tunicamycin-sensitive glycosylation, yielding a product with the same mobility on SDS-PAGE as authentic maize ABP1. On immunoblots the expressed protein is recognized by anti-KDEL monoclonal antibodies. Immunofluorescence localization demonstrates that it is targeted to and retained in the endoplasmic reticulum of insect cells in accordance with its signal peptide and KDEL retention sequence. The expressed ABP1 also appears to be active, since extracts of insect cells expressing ABP1 contain a saturable high-affinity 1-naphthylacetic acid-binding site, whereas no saturable auxin-binding activity is detected in extracts from control cells
    • …
    corecore