80,687 research outputs found

    Fe and N self-diffusion in non-magnetic Fe:N

    Full text link
    Fe and N self-diffusion in non-magnetic FeN has been studied using neutron reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were prepared using magnetron sputtering. It was remarkable to observe that N diffusion was slower compared to Fe while the atomic size of Fe is larger compared to N. An attempt has been made to understand the diffusion of Fe and N in non-magnetic Fe:N

    Full QCD with the L\"uscher local bosonic action

    Get PDF
    We investigate L\"uscher's method of including dynamical Wilson fermions in a lattice simulation of QCD with two quark flavours. We measure the accuracy of the approximation by comparing it with Hybrid Monte Carlo results for gauge plaquette and Wilson loops. We also introduce an additional global Metropolis step in the update. We show that the complexity of L\"uscher's algorithm compares favourably with that of the Hybrid Monte Carlo.Comment: 21 pages Late

    Specific heat at constant volume in the thermodynamic model

    Full text link
    A thermodynamic model for multifragmentation which is frequently used appears to give very different values for specific heat at constant volume depending upon whether canonical or grand canonical ensemble is used. The cause for this discrepancy is analysed.Comment: Revtex, 7 pages including 4 figure

    Distributed Private Heavy Hitters

    Full text link
    In this paper, we give efficient algorithms and lower bounds for solving the heavy hitters problem while preserving differential privacy in the fully distributed local model. In this model, there are n parties, each of which possesses a single element from a universe of size N. The heavy hitters problem is to find the identity of the most common element shared amongst the n parties. In the local model, there is no trusted database administrator, and so the algorithm must interact with each of the nn parties separately, using a differentially private protocol. We give tight information-theoretic upper and lower bounds on the accuracy to which this problem can be solved in the local model (giving a separation between the local model and the more common centralized model of privacy), as well as computationally efficient algorithms even in the case where the data universe N may be exponentially large

    Duration distributions for different softness groups of gamma-ray bursts

    Full text link
    Gamma-ray bursts (GRBs) are divided into two classes according to their durations. We investigate if the softness of bursts plays a role in the conventional classification of the objects. We employ the BATSE (Burst and Transient Source Experiment) catalog and analyze the duration distributions of different groups of GRBs associated with distinct softness. Our analysis reveals that the conventional classification of GRBs with the duration of bursts is influenced by the softness of the objects. There exits a bimodality in the duration distribution of GRBs for each group of bursts and the time position of the dip in the bimodality histogram shifts with the softness parameter. Our findings suggest that the conventional classification scheme should be modified by separating the two well-known populations in different softness groups, which would be more reasonable than doing so with a single sample. According to the relation between the dip position and the softness parameter, we get an empirical function that can roughly set apart the short-hard and long-soft bursts: SP=(0.100±0.028)T90(0.85±0.18)SP = (0.100 \pm 0.028) T_{90}^{-(0.85 \pm 0.18)}, where SPSP is the softness parameter adopted in this paper.Comment: 20 pages, 10 figure
    corecore