1,529 research outputs found

    Generalized seniority for the shell model with realistic interactions

    Full text link
    The generalized seniority scheme has long been proposed as a means of dramatically reducing the dimensionality of nuclear shell model calculations, when strong pairing correlations are present. However, systematic benchmark calculations, comparing results obtained in a model space truncated according to generalized seniority with those obtained in the full shell model space, are required to assess the viability of this scheme. Here, a detailed comparison is carried out, for semimagic nuclei taken in a full major shell and with realistic interactions. The even-mass and odd-mass Ca isotopes are treated in the generalized seniority scheme, for generalized seniority v<=3. Results for level energies, orbital occupations, and electromagnetic observables are compared with those obtained in the full shell model space.Comment: 13 pages, 8 figures; published in Phys. Rev.

    Effects of a ketogenic diet in overweight women with polycystic ovary syndrome

    Get PDF
    Background: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women during reproductive age. It is characterised clinically by oligo-ovulation or anovulation, hyper-androgenism, and the presence of polycystic ovaries. It is associated with an increased prevalence of metabolic syndrome, cardiovascular disease and type 2 diabetes. The onset of PCOS has been associated to several hereditary and environmental factors, but insulin resistance plays a key pathogenetic role. We sought to investigate the effects of a ketogenic diet (KD) on women of childbearing age with a diagnosis of PCOS. Methods: Fourteen overweight women with diagnosis of PCOS underwent to a ketogenic Mediterranean diet with phyoextracts (KEMEPHY) for 12 week. Changes in body weight, body mass index (BMI), fat body mass (FBM), lean body mass (LBM), visceral adipose tissue (VAT), insulin, glucose, HOMA-IR, total cholesterol, low density lipoprotein (LDL), high density lipoprotein (HDL), triglycerides (TGs), total and free testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH); dehydroepiandrosterone sulfate (DHEAs), estradiol, progesterone, sex hormone binding globulin (SHBG) and Ferriman Gallwey score were evaluated. Results: After 12 weeks, anthropometric and body composition measurements revealed a significant reduction of body weight (- 9.43 kg), BMI (- 3.35), FBM (8.29 kg) and VAT. There was a significant, slightly decrease of LBM. A significant decrease in glucose and insulin blood levels were observed, together with a significant improvement of HOMA-IR. A significant decrease of triglycerides, total cholesterol and LDL were observed along with a rise in HDL levels. The LH/FSH ratio, LH total and free testosterone, and DHEAS blood levels were also significantly reduced. Estradiol, progesterone and SHBG increased. The Ferriman Gallwey Score was slightly, although not significantly, reduced. Conclusions: Our results suggest that a KD may be considered as a valuable non pharmacological treatment for PCOS. Longer treatment periods should be tested to verify the effect of a KD on the dermatological aspects of PCOS. Trial registration Clinicaltrial.gov, NCT04163120, registrered 10 November 2019, retrospectively registered, https://clinicaltrials.gov

    MR blockade protects against diet induced obesity, adipocyte dysfunction and cardiac inflammation in mice, through browning of the adipose organ and modulation of autophagy

    Get PDF
    Obesity is a key factor in the development of insulin resistance (IR), cardiovascular disease, hypertension, type 2 diabetes etc. Given the near epidemic incidence of obesity in western society there is a clear need for effective treatment options. Mineralocorticoid receptor (MR) blockade has shown significant promise in transgenic mouse models of obesity in limiting IR and adipocyte dysfunction, a disease that is independent of classical MR actions (renal). Female 10-weekold C57bl6 mice were fed with normal chow or a high fat (HF) diet for 12 weeks. Mice fed HF diet were concomitantly treated for 12 weeks with drospirenone (DRSP, 6 mg/kg/day), a potent MR antagonist with antiadipogenic activity, or spironolactone (SPIRO, 20 mg/kg/day). Mice fed HF diet showed a significant increase in total body weight, fat mass, mean adipocyte size, expression of white adipose tissue (WAT) marker genes and showed impaired glucose tolerance after intraperitoneal plasma glucose tolerance test. DRSP and SPIRO prevented weight gain and white fat mass expansion induced by HF diet in parametrial, perivescical, and inguinal depots without affecting interscapular fat pad weight. Magnetic Resonance Imaging (MRI) confirmed that MR antagonists blocked the HF dietdriven expansion of abdomino-pelvic (parametrial and perivescical) fat volume. High levels of MR mRNA were detected in all depots of adipose tissue. HF fed mice showed no increase in heart or kidney weight and tissue fibrosis. Cardiac macrophage recruitment and osteopontin staining was increased in hearts of HF fed mice and reversed by both MR antagonists. Moreover, both DRSP and SPIRO prevented the impaired glucose tolerance in mice fed HF diet, and countered HF diet-induced up-regulation of WAT markers transcripts and adipocyte hypertrophy. Importantly, MR antagonists increased uncoupling protein 1 (UCP-1) positive brown-like adipocyte content in WAT, and improved metabolic activity of adipose tissue, as indicated by PET/CT imaging. In keeping with this, MR antagonism significantly increased expression of brown-like adipocyte marker genes such PRDM16, CIDEA, beta-3 adrenergic receptor (ADRB3) and UCP-1 in all WAT depots analysed. In exploring the mechanism, we demonstrated that MR antagonism induced brown adipose tissue (BAT) markers, and reduced the autophagic rate, a key remodelling process in adipocyte differentiation, in WAT depots in vivo as well as in primary cultured adipocytes. We conclude that adipocyte MR regulates BAT-like remodeling of WAT through modulation of autophagy. MR blockade therefore has promise as a novel therapeutic option for the prevention of metabolic dysfunctions and the cardiac consequences of obesity. doi:10.1016/j.ijcme.2015.05.012 Transcriptional control of ICAM-1 in human coronary artery endothelial cells by Mineralocorticoid Receptor (MR): Implications for the protective effects of MR antagonists in cardiovascular diseases V. Marzolla, A. Armani, A. Fabbri, I.Z. Jaffe, M. Caprio Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Rome, Italy Department of Medicina dei Sistemi, Endocrinology Unit, S. Eugenio & CTO A. Alesini Hospitals, University Tor Vergata, Rome, Italy Molecular Cardiology Research Institute, Tufts Medical Center, Boston

    Structural design of the optical bench and enclosure for MAORY, adaptive optics module for the ELT

    Get PDF
    This paper outlines an overview of the mechanical design of the optical bench and the enclosure for MAORY (Multi-conjugate Adaptive Optics RelaY) for the Extremely Large Telescope. MAORY will enable high-angular resolution observations in the near infrared by employing real-time compensation of the wave-front distortions due to atmospheric turbulence and other disturbances on the telescope. The main purpose of the optical bench is to provide support to the opto-mechanical mountings and subsystems that will be integrated on it. The design philosophy behind the proposed architecture is a truss spatial structure with the aim of optimizing the mass of the Main Structure. The enclosure has to protect the optomechanical elements and to achieve a uniform temperature distribution in its internal environment. The mechanical design of the bench and the enclosure was supported by a set of structural FE analyses, to verify the design compliance with ESO (European Southern Observatory) requirements

    Models of radon exhalation from building structures: General and case-specific solutions.

    Get PDF
    Assessing the radon activity that exhales from building structures is crucial to identify the best strategies to prevent radon from entering a building or reducing its concentration in the inhabited spaces. The direct measurement is extremely difficult, so the common approach has consisted in developing models describing the radon migration and exhalation phenomena for building porous materials. However, due to the mathematical complexity of comprehensively modelling the radon transport phenomenon in buildings, simplified equations have been mostly adopted until now to assess the radon exhalation. A systematic analysis of the models applicable to radon transport has been carried out and it has resulted in four models differing in the migration mechanisms – only diffusive or diffusive and advective – and the presence of inner radon generation. The general solutions have been obtained for all the models. Moreover, three case-specific sets of boundary conditions have been formulated to account for all the actual scenarios occurring in buildings: both perimetral and partition walls and building structures in direct contact with soil or embankments. The corresponding case-specific solutions obtained serve as a key practical tool to improve the accuracy in assessing the contribution of building materials to indoor radon concentration according to the site-specific installation conditions in addition to the material inner properties
    corecore