1,683,033 research outputs found

    Low temperature scale for a 1 to 20 degree Kelvin region

    Get PDF
    New temperature scale, accurate to better than plus or minus 0.001 Kelvin over low temperature region, is based on National Bureau of Standards 1955 platinum resistance thermometer scale and utilizes precise susceptibility measurements on two paramagnetic salts

    Reciprocity in Social Networks with Capacity Constraints

    Full text link
    Directed links -- representing asymmetric social ties or interactions (e.g., "follower-followee") -- arise naturally in many social networks and other complex networks, giving rise to directed graphs (or digraphs) as basic topological models for these networks. Reciprocity, defined for a digraph as the percentage of edges with a reciprocal edge, is a key metric that has been used in the literature to compare different directed networks and provide "hints" about their structural properties: for example, are reciprocal edges generated randomly by chance or are there other processes driving their generation? In this paper we study the problem of maximizing achievable reciprocity for an ensemble of digraphs with the same prescribed in- and out-degree sequences. We show that the maximum reciprocity hinges crucially on the in- and out-degree sequences, which may be intuitively interpreted as constraints on some "social capacities" of nodes and impose fundamental limits on achievable reciprocity. We show that it is NP-complete to decide the achievability of a simple upper bound on maximum reciprocity, and provide conditions for achieving it. We demonstrate that many real networks exhibit reciprocities surprisingly close to the upper bound, which implies that users in these social networks are in a sense more "social" than suggested by the empirical reciprocity alone in that they are more willing to reciprocate, subject to their "social capacity" constraints. We find some surprising linear relationships between empirical reciprocity and the bound. We also show that a particular type of small network motifs that we call 3-paths are the major source of loss in reciprocity for real networks

    Momentum isotropisation in random potentials

    Full text link
    When particles are multiply scattered by a random potential, their momentum distribution becomes isotropic on average. We study this quantum dynamics numerically and with a master equation. We show how to measure the elastic scattering time as well as characteristic isotropisation times, which permit to reconstruct the scattering phase function, even in rather strong disorder.Comment: 5 pages, paper contributed to Lyon BEC 2012; v2 minor changes, version published in prin

    Compatible finite element methods for numerical weather prediction

    Full text link
    This article takes the form of a tutorial on the use of a particular class of mixed finite element methods, which can be thought of as the finite element extension of the C-grid staggered finite difference method. The class is often referred to as compatible finite elements, mimetic finite elements, discrete differential forms or finite element exterior calculus. We provide an elementary introduction in the case of the one-dimensional wave equation, before summarising recent results in applications to the rotating shallow water equations on the sphere, before taking an outlook towards applications in three-dimensional compressible dynamical cores.Comment: To appear in ECMWF Seminar proceedings 201

    Characterization of Si/Si_(1-y)C_y superlattices grown by surfactant assisted molecular beam epitaxy

    Get PDF
    Si/Si_(0.97)C_(0.03) superlattices grown on Si(001) substrates by Sb surfactant assisted molecular beam epitaxy are characterized by in situ reflection high energy electron diffraction (RHEED), atomic force microscopy, transmission electron microscopy (TEM), and high resolution x‐ray diffraction. The RHEED shows that, in the absence of Sb, the growth front roughens during Si_(0.97)C_(0.03) growth and smooths during subsequent Si growth. In contrast, when Sb is present, the growth front remains smooth throughout the growth. This observation is confirmed by cross‐sectional TEM, which reveals that for samples grown without the use of Sb, the Si/Si_(0.97)C_(0.03) interfaces (Si_(0.97)C_(0.03) on Si) are much more abrupt than the Si_(0.97)C_(0.03)/Si interfaces. In the case of Sb assisted growth, there is no observable difference in abruptness between the two types of interfaces. Atomic force microscopy micrographs of the Si_(0.97)C_(0.03) surface reveal features that could be the source of the roughness observed by RHEED and TEM

    Duality and zero-point length of spacetime

    Get PDF
    The action for a relativistic free particle of mass mm receives a contribution mds-mds from a path segment of infinitesimal length dsds. Using this action in a path integral, one can obtain the Feynman propagator for a spinless particle of mass mm. If one of the effects of quantizing gravity is to introduce a minimum length scale LPL_P in the spacetime, then one would expect the segments of paths with lengths less than LPL_P to be suppressed in the path integral. Assuming that the path integral amplitude is invariant under the `duality' transformation dsLP2/dsds\to L_P^2/ds, one can calculate the modified Feynman propagator. I show that this propagator is the same as the one obtained by assuming that: quantum effects of gravity leads to modification of the spacetime interval (xy)2(x-y)^2 to (xy)2+LP2(x-y)^2+L_P^2. This equivalence suggests a deep relationship between introducing a `zero-point-length' to the spacetime and postulating invariance of path integral amplitudes under duality transformations.Comment: Revtex document; 4 page

    The Ionic Charge State Composition at High Energies in Large Solar Energetic Particle Events in Solar Cycle 23

    Get PDF
    The ionic charge states of solar energetic particles (SEPs) depend upon the temperature of the source material and on the environment encountered during acceleration and transport during which electron stripping may occur. Measurements of SEP charge states at relatively high energies (≳15 MeV/nucleon) are possible with the Mass Spectrometer Telescope (MAST) on the Solar, Anomalous, and Magnetospheric Particle Explorer satellite by using the Earth's magnetic field as a particle rigidity filter. Using MAST data, we have determined ionic charge states of Fe and other elements in several of the largest SEP events of solar cycle 23. The charge states appear to be correlated with elemental abundances, with high charge states (~20 for Fe) for all elements in large Fe-rich events. We review the geomagnetic filter technique and summarize the results from MAST to date, with particular emphasis on new measurements in the very large 14 July 2000 SEP event. We compare the charge states determined by MAST with other measurements and with those expected from equilibrium calculations
    corecore