114 research outputs found

    Human impacts in pine forests: past, present, and future

    Get PDF
    Pines (genus Pinus) form the dominant tree cover over large parts of the Northern Hemisphere. Human activities have affected the distribution, composition, and structure of pine forests for millennia. Different human-mediated factors have affected different pine species in different ways in different regions. The most important factors affecting pine forests are altered fire regimes, altered grazing/browsing regimes, various harvesting/construction activities, land clearance and abandonment, purposeful planting and other manipulations of natural ecosystems, alteration of biotas through species reshuffling, and pollution. These changes are occurring against a backdrop of natural and anthropogenically driven climate change. We review past and current influence of humans in pine forests, seeking broad generalizations. These insights are combined with perspectives from paleoecology to suggest probable trajectories in the face of escalating human pressure. The immense scale of impacts and the complex synergies between agents of change calls for urgent and multifaceted action.Centre of Excellence for Invasion Biolog

    Determination of nitrogen dioxide, sulfur dioxide, ozone, and ammonia in ambient air using the passive sampling method associated with ion chromatographic and potentiometric analyses

    Get PDF
    Concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and ammonia (NH3) were determined in the ambient air of Al-Ain city over a year using the passive sampling method associated with ion chromatographic and potentiometric detections. IVL samplers were used for collecting nitrogen and sulfur dioxides whereas Ogawa samplers were used for collecting ozone and ammonia. Five sites representing the industrial, traffic, commercial, residential, and background regions of the city were monitored in the course of this investigation. Year average concentrations of ≤59.26, 15.15, 17.03, and 11.88 μg/m3 were obtained for NO2, SO2, O3, and NH3, respectively. These values are lower than the maxima recommended for ambient air quality standards by the local environmental agency and the world health organization. Results obtained were correlated with the three meteorological parameters: humidity, wind speed, and temperature recorded during the same period of time using the paired t test, probability p values, and correlation coefficients. Humidity and wind speed showed insignificant effects on NO2, SO2, O3, and NH3 concentrations at 95% confidence level. Temperature showed insignificant effects on the concentrations of NO2 and NH3 while significant effects on SO2 and O3 were observed. Nonlinear correlations (R2 ≤ 0.722) were obtained for the changes in measured concentrations with changes in the three meteorological parameters. Passive samplers were shown to be not only precise (RSD ≤ 13.57) but also of low cost, low technical demand, and expediency in monitoring different locations

    Adaptation of forest ecosystems to air pollution and climate change : a global assessment on research priorities.

    Get PDF
    Climate change and air pollution are two of the anthropogenic stressors that require international collaboration. Influence mechanisms and combating strategies towards them have similarities to some extent. Impacts of air pollution and climate change have long been studied under IUFRO Research Group 7.01 and state of the art findings are presented at biannual meetings. Monitoring, modelling, assessment of multiple stressors, ecophysiology, and nutrient cycles have been thoroughly studied aspects of climate change and air pollution research for a long time under the umbrella of IUFRO RG 7.01. Recently, social and economic issues together with water relations are gaining more attention in parallel with science requirements on adaptation. In this paper, we summarise the main research needs emphasized at the recent 24th IUFRO RG 7.01 Conference titled ?Adaptation of Forest Ecosystems to Air Pollution and Climate Change?. One important conclusion of the conference was the need for information on nutritional status of forest stands for sustainable forest management. It has been suggested to maintain long-term monitoring programs and to account for the effects of extreme years, and past and present management practices. Long-term monitoring can also help to understand the effects of forestry treatments on the nutrient and water budgets of the ecosystems which may enable to improve management practices like water saving silviculture

    Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review

    Get PDF
    Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM1). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed
    • …
    corecore