705 research outputs found

    The effect of Fermi surface curvature on low-energy properties of fermions with singular interactions

    Full text link
    We discuss the effect of Fermi surface curvature on long-distance/time asymptotic behaviors of two-dimensional fermions interacting via a gapless mode described by an effective gauge field-like propagator. By comparing the predictions based on the idea of multi-dimensional bosonization with those of the strong- coupling Eliashberg approach, we demonstrate that an agreement between the two requires a further extension of the former technique.Comment: Latex, 4+ pages. Phys. Rev. Lett., to appea

    Monitoring the Petermann Ice Island with TanDEM-X

    Get PDF
    This paper presents the processing of TanDEM-X acquisitions for the monitoring of the topography of the Petermann ice island. In this particular case the area under study is continuously moving and the acquisition geometry is changing, so the processing of the iceberg’s DEMs is challenging and additional effects are to be considered. The SAR processing chain used is presented and the results obtained summarized, showing the effects and limitations observed during the process

    An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

    Full text link
    Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg--Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.Comment: 14 pages, 11 figures; submitted to a special issue of 'Frontiers of Physics' dedicated to 'Quantum Foundation and Technology: Frontiers and Future

    Dynamic scaling in the vicinity of the Luttinger liquid fixed point

    Full text link
    We calculate the single-particle spectral function A (k, omega) of a one-dimensional Luttinger liquid by means of a functional renormalization group (RG) approach. Given an infrared energy cutoff Lambda = Lambda_0 e^{- l}, our approach yields the spectral function in the scaling form, A_{\Lambda} (k_F + p, omega) = tau Z_l tilde{A}_l (p xi, omega tau), where k_F is the Fermi momentum, Z_l is the wave-function renormalization factor, tau = 1 / \Lambda is the time scale and xi = v_F / \Lambda is the length scale associated with Lambda. At the Luttinger liquid fixed point (l rightarrow infty) our RG result for A (k, omega) exhibits the correct anomalous scaling properties, and for k = \pm k_F agrees exactly with the well-known bosonization result at weak coupling. Our calculation demonstrates that the field rescaling is essential for obtaining the crossover from Fermi liquid behavior to Luttinger liquid behavior from a truncation of the hierarchy of exact RG flow equations as the infrared cutoff is reduced.Comment: 15 pages, 5 figure

    A 16 x 16 CMOS amperometric microelectrode array for simultaneous electrochemical measurements

    Get PDF
    There is a requirement for an electrochemical sensor technology capable of making multivariate measurements in environmental, healthcare, and manufacturing applications. Here, we present a new device that is highly parallelized with an excellent bandwidth. For the first time, electrochemical cross-talk for a chip-based sensor is defined and characterized. The new CMOS electrochemical sensor chip is capable of simultaneously taking multiple, independent electroanalytical measurements. The chip is structured as an electrochemical cell microarray, comprised of a microelectrode array connected to embedded self-contained potentiostats. Speed and sensitivity are essential in dynamic variable electrochemical systems. Owing to the parallel function of the system, rapid data collection is possible while maintaining an appropriately low-scan rate. By performing multiple, simultaneous cyclic voltammetry scans in each of the electrochemical cells on the chip surface, we are able to show (with a cell-to-cell pitch of 456 μm) that the signal cross-talk is only 12% between nearest neighbors in a ferrocene rich solution. The system opens up the possibility to use multiple independently controlled electrochemical sensors on a single chip for applications in DNA sensing, medical diagnostics, environmental sensing, the food industry, neuronal sensing, and drug discovery

    Hybrid Amperometric and Potentiometric Sensing Based on a CMOS ISFET Array

    Get PDF
    Potentiometry and amperometry are some of the most important techniques for electroanalytical applications. Integrating these two techniques on a single chip using CMOS technology paves the way for more analysis and measurement of chemical solutions. In this paper, we describe the integration of electrode transducers (amperometry) on an ion imager based on an ISFET array (potentiometry). In particular, this integration enables the spatial representation of the potential distribution of active electrodes in a chemical solution under investigation

    Radiative Transfer in Obliquely Illuminated Accretion Disks

    Full text link
    The illumination of an accretion disk around a black hole or neutron star by the central compact object or the disk itself often determines its spectrum, stability, and dynamics. The transport of radiation within the disk is in general a multi-dimensional, non-axisymmetric problem, which is challenging to solve. Here, I present a method of decomposing the radiative transfer equation that describes absorption, emission, and Compton scattering in an obliquely illuminated disk into a set of four one-dimensional transfer equations. I show that the exact calculation of the ionization balance and radiation heating of the accretion disk requires the solution of only one of the one-dimensional equations, which can be solved using existing numerical methods. I present a variant of the Feautrier method for solving the full set of equations, which accounts for the fact that the scattering kernels in the individual transfer equations are not forward-backward symmetric. I then apply this method in calculating the albedo of a cold, geometrically thin accretion disk.Comment: 16 pages, 3 figures; to appear in The Astrophysical Journa

    Functional renormalization group in the broken symmetry phase: momentum dependence and two-parameter scaling of the self-energy

    Full text link
    We include spontaneous symmetry breaking into the functional renormalization group (RG) equations for the irreducible vertices of Ginzburg-Landau theories by augmenting these equations by a flow equation for the order parameter, which is determined from the requirement that at each RG step the vertex with one external leg vanishes identically. Using this strategy, we propose a simple truncation of the coupled RG flow equations for the vertices in the broken symmetry phase of the Ising universality class in D dimensions. Our truncation yields the full momentum dependence of the self-energy Sigma (k) and interpolates between lowest order perturbation theory at large momenta k and the critical scaling regime for small k. Close to the critical point, our method yields the self-energy in the scaling form Sigma (k) = k_c^2 sigma^{-} (k | xi, k / k_c), where xi is the order parameter correlation length, k_c is the Ginzburg scale, and sigma^{-} (x, y) is a dimensionless two-parameter scaling function for the broken symmetry phase which we explicitly calculate within our truncation.Comment: 9 pages, 4 figures, puplished versio

    COMPETITION AMONG HOSPITALS AND ITS MEASUREMENT: THEORY AND A CASE STUDY

    Get PDF
    Our paper provides several insights on the characteristics of the concept of “Poles d’Excellence Rurale” (PER) through bilateral comparisons with that of Competitive Pole (CP) and cluster. The concept of PER is a French government’ initiative designed for the development of rural areas similar to that of the Competitive Pole. We emphasize important particularities of these concepts by analyzing some of their similarities and major differences.Pole d’Excellence Rurale, Competitive Pole, cluster, rural development

    The Randomized Shortened Dental Arch Study: Tooth Loss

    Get PDF
    The evidence concerning the management of shortened dental arch (SDA) cases is sparse. This multi-center study was aimed at generating data on outcomes and survival rates for two common treatments, removable dental prostheses (RDP) for molar replacement or no replacement (SDA). The hypothesis was that the treatments lead to different incidences of tooth loss. We included 215 patients with complete molar loss in one jaw. Molars were either replaced by RDP or not replaced, according to the SDA concept. First tooth loss after treatment was the primary outcome measure. This event occurred in 13 patients in the RDP group and nine patients in the SDA group. The respective Kaplan-Meier survival rates at 38 months were 0.83 (95% CI: 0.74-0.91) in the RDP group and 0.86 (95% CI: 0.78-0.95) in the SDA group, the difference being non-significant
    corecore