43 research outputs found

    Test–retest, retest, and retest: Growth curve models of repeat testing with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT)

    Get PDF
    Computerized neuropsychological testing has become an important tool in the identification and management of sports-related concussions; however, the psychometric effect of repeat testing has not been studied extensively beyond test–retest statistics. The current study analyzed data from Division I collegiate athletes who completed Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) baseline assessments at four sequential time points that varied over the course of their athletic careers. Administrations were part of a larger National Institutes of Health (NIH) study. Growth curve modeling showed that the two memory composite scores increased significantly with successive administrations: Change in Verbal Memory was best represented with a quadratic model, while a linear model best fit Visual Memory. Visual Motor Speed and Reaction Time composites showed no significant linear or quadratic growth. The results demonstrate the effect of repeated test administrations for memory composite scores, while speed composites were not significantly impacted by repeat testing. Acceptable test–retest reliability was demonstrated for all four composites as well

    Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes

    Get PDF
    Objective: To determine whether exposure to repetitive head impacts over a single season negatively affects cognitive performance in collegiate contact sport athletes. Methods: This is a prospective cohort study at 3 Division I National Collegiate Athletic Association athletic programs. Participants were 214 Division I college varsity football and ice hockey players who wore instrumented helmets that recorded the acceleration-time history of the head following impact, and 45 noncontact sport athletes. All athletes were assessed prior to and shortly after the season with a cognitive screening battery (ImPACT) and a subgroup of athletes also were assessed with 7 measures from a neuropsychological test battery. Results: Few cognitive differences were found between the athlete groups at the preseason or postseason assessments. However, a higher percentage of the contact sport athletes performed more poorly than predicted postseason on a measure of new learning (California Verbal Learning Test) compared to the noncontact athletes (24% vs 3.6%; p \u3c 0.006). On 2 postseason cognitive measures (ImPACT Reaction Time and Trails 4/B), poorer performance was significantly associated with higher scores on several head impact exposure metrics. Conclusion: Repetitive head impacts over the course of a single season may negatively impact learning in some collegiate athletes. Further work is needed to assess whether such effects are short term or persistent

    Identification of Common Differentially Expressed Genes in Urinary Bladder Cancer

    Get PDF
    BACKGROUND: Current diagnosis and treatment of urinary bladder cancer (BC) has shown great progress with the utilization of microarrays. PURPOSE: Our goal was to identify common differentially expressed (DE) genes among clinically relevant subclasses of BC using microarrays. METHODOLOGY/PRINCIPAL FINDINGS: BC samples and controls, both experimental and publicly available datasets, were analyzed by whole genome microarrays. We grouped the samples according to their histology and defined the DE genes in each sample individually, as well as in each tumor group. A dual analysis strategy was followed. First, experimental samples were analyzed and conclusions were formulated; and second, experimental sets were combined with publicly available microarray datasets and were further analyzed in search of common DE genes. The experimental dataset identified 831 genes that were DE in all tumor samples, simultaneously. Moreover, 33 genes were up-regulated and 85 genes were down-regulated in all 10 BC samples compared to the 5 normal tissues, simultaneously. Hierarchical clustering partitioned tumor groups in accordance to their histology. K-means clustering of all genes and all samples, as well as clustering of tumor groups, presented 49 clusters. K-means clustering of common DE genes in all samples revealed 24 clusters. Genes manifested various differential patterns of expression, based on PCA. YY1 and NFÎşB were among the most common transcription factors that regulated the expression of the identified DE genes. Chromosome 1 contained 32 DE genes, followed by chromosomes 2 and 11, which contained 25 and 23 DE genes, respectively. Chromosome 21 had the least number of DE genes. GO analysis revealed the prevalence of transport and binding genes in the common down-regulated DE genes; the prevalence of RNA metabolism and processing genes in the up-regulated DE genes; as well as the prevalence of genes responsible for cell communication and signal transduction in the DE genes that were down-regulated in T1-Grade III tumors and up-regulated in T2/T3-Grade III tumors. Combination of samples from all microarray platforms revealed 17 common DE genes, (BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20, LHCGR, TM9SF1 and HCCS) 4 of which participate in numerous pathways. CONCLUSIONS/SIGNIFICANCE: The identification of the common DE genes among BC samples of different histology can provide further insight into the discovery of new putative markers

    Psychometric properties of the standardized assessment of concussion in youth football: Validity, reliability, and demographic factors

    Get PDF
    The objective of this study was to determine the psychometrics (reliability, validity) of the original Standardized Assessment of Concussion (SAC) in a youth sample (ages 11 to 13). Demographic factors of race, level of vocabulary knowledge, mother’s level of education were also considered. Over 150 youth football athletes completed the SAC and a brief battery of NIH Toolbox cognitive tests as part of a larger study on biomechanical factors in youth sport concussion. This was a within-subjects design (pre-season, post-season assessments), and correlational analysis of convergent and discriminant validity. Between groups analysis based on demographic differences was also employed. The pre-season SAC scores were not different by age; however, SAC scores were statistically different by race: t(155) = 3.162, p = .002, d = .519. Maternal level of education and participant vocabulary scores were related to racial group membership. Convergent and discriminant validity were established compared to NIH Toolbox tests of memory and speed. Pre–post-season tests for 108 participants established marginally acceptable test–retest reliability (ICC = .692). These data support the use of the original SAC in youth football although clinicians must be aware of racial differences in scores

    Spectrum of acute clinical characteristics of diagnosed concussions in college athletes wearing instrumented helmets

    Get PDF
    Object. Concussive head injuries have received much attention in the medical and public arenas, as concerns have been raised about the potential shortand long-term consequences of injuries sustained in sports and other activities. While many student athletes have required evaluation after concussion, the exact definition of concussion has varied among disciplines and over time. The authors used data gathered as part of a multiinstitutional longitudinal study of the biomechanics of head impacts in helmeted collegiate athletes to characterize what signs, symptoms, and clinical histories were used to designate players as having sustained concussions. Methods. Players on 3 college football teams and 4 ice hockey teams (male and female) wore helmets instrumented with Head Impact Telemetry (HIT) technology during practices and games over 2–4 seasons of play. Preseason clinical screening batteries assessed baseline cognition and reported symptoms. If a concussion was diagnosed by the team medical staff, basic descriptive information was collected at presentation, and concussed players were reevaluated serially. The specific symptoms or findings associated with the diagnosis of acute concussion, relation to specific impact events, timing of symptom onset and diagnosis, and recorded biomechanical parameters were analyzed. Results. Data were collected from 450 athletes with 486,594 recorded head impacts. Forty-eight separate concussions were diagnosed in 44 individual players. Mental clouding, headache, and dizziness were the most common presenting symptoms. Thirty-one diagnosed cases were associated with an identified impact event; in 17 cases no specific impact event was identified. Onset of symptoms was immediate in 24 players, delayed in 11, and unspecified in 13. In 8 cases the diagnosis was made immediately after a head impact, but in most cases the diagnosis was delayed (median 17 hours). One diagnosed concussion involved a 30-second loss of consciousness; all other players retained alertness. Most diagnoses were based on self-reported symptoms. The mean peak angular and rotational acceleration values for those cases associated with a specific identified impact were 86.1 ± 42.6g (range 16.5–177.9g) and 3620 ± 2166 rad/sec2 (range 183–7589 rad/sec2), respectively. Conclusions. Approximately two-thirds of diagnosed concussions were associated with a specific contact event. Half of all players diagnosed with concussions had delayed or unclear timing of onset of symptoms. Most had no externally observed findings. Diagnosis was usually based on a range of self-reported symptoms after a variable delay. Accelerations clustered in the higher percentiles for all impact events, but encompassed a wide range. These data highlight the heterogeneity of criteria for concussion diagnosis, and in this sports context, its heavy reliance on self-reported symptoms. More specific and standardized definitions of clinical and objective correlates of a “concussion spectrum” may be needed in future research efforts, as well as in the clinical diagnostic arena

    Prolotherapy Induces an Inflammatory Response in Human Tenocytes In Vitro

    No full text
    Proliferative therapy, or prolotherapy, is a controversial treatment method for many connective tissue injuries and disorders. It involves the injection of a proliferant, or irritant solution, into the site of injury, which causes small-scale cell death. This therapeutic trauma is theorized to initiate the body's wound-healing cascade, perhaps leading to tissue repair. The immediate effects of many of these proliferants are poorly characterized, as are the cellular responses to them; here, we sought to evaluate the immediate effects of two common proliferants (dextrose and P2G, a combination of phenol, glucose, and glycerin) on the cellular response of human tenocytes, and begin to explicate the mechanisms with which each proliferant functions. We asked: What are the effects of treating cultured tenocytes with proliferative treatment agents on their (1) cellular metabolic activity, (2) RNA expression, (3) protein secretion, and (4) cell migration? Using human hamstring and Achilles tendon cells, we attempted to answer our research questions. We used a colorimetric metabolic assay to assess the effect of dextrose and P2G proliferant treatment on cell mitochondrial activity compared with nontreated tenocytes. Next, using quantitative PCR, ELISA, and a reporter cell line, we assessed the expression of several key markers involved in tendon development and inflammation. In addition, we used a scratch wound-healing assay to evaluate the effect of proliferant treatment on tenocyte migration. Results showed that exposure to both solutions led to decreased metabolic activity of tenocytes, with P2G having the more pronounced effect (75% +/- 7% versus 95% +/- 7% of untreated control cell metabolic levels) (ANOVA; p < 0.01; mean difference, 0.202; 95% CI, 0.052-0.35). Next, gene expression analysis confirmed that treatment led to the upregulation of key proinflammatory markers including interleukin-8 and cyclooxygenase-2 and downregulation of the matrix marker collagen type I. Furthermore, using a reporter cell line for transforming growth factor-beta (TGF-beta), a prominent antiinflammatory marker, we showed that treatments led to decreased TGF-beta bioactivity. Analysis of soluble proteins using ELISA revealed elevated levels of soluble prostaglandin E2 (PGE2), a prominent inducer of inflammation. Finally, both solutions led to decreased cellular migration in the tenocytes. Taken together, these results suggest that prolotherapy, more so with P2G, may work by decreasing cellular function and eliciting an inflammatory response in tenocytes. Additional studies are needed to confirm the cellular signaling mechanisms involved and the resulting immediate response in vivo. If these preliminary in vitro findings can be confirmed in an in vivo model, they may provide clues for a possible cellular mechanism of a common alternative treatment method currently used for certain soft tissue injuries

    Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes

    Get PDF
    Objective: To determine whether exposure to repetitive head impacts over a single season negatively affects cognitive performance in collegiate contact sport athletes. Methods: This is a prospective cohort study at 3 Division I National Collegiate Athletic Association athletic programs. Participants were 214 Division I college varsity football and ice hockey players who wore instrumented helmets that recorded the acceleration-time history of the head following impact, and 45 noncontact sport athletes. All athletes were assessed prior to and shortly after the season with a cognitive screening battery (ImPACT) and a subgroup of athletes also were assessed with 7 measures from a neuropsychological test battery. Results: Few cognitive differences were found between the athlete groups at the preseason or postseason assessments. However, a higher percentage of the contact sport athletes performed more poorly than predicted postseason on a measure of new learning (California Verbal Learning Test) compared to the noncontact athletes (24% vs 3.6%; p \u3c 0.006). On 2 postseason cognitive measures (ImPACT Reaction Time and Trails 4/B), poorer performance was significantly associated with higher scores on several head impact exposure metrics. Conclusion: Repetitive head impacts over the course of a single season may negatively impact learning in some collegiate athletes. Further work is needed to assess whether such effects are short term or persistent

    Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study

    Get PDF
    BACKGROUND: More than 50 million people worldwide sustain a traumatic brain injury (TBI) annually. Detection of intracranial injuries relies on head CT, which is overused and resource intensive. Blood-based brain biomarkers hold the potential to predict absence of intracranial injury and thus reduce unnecessary head CT scanning. We sought to validate a test combining ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP), at predetermined cutoff values, to predict traumatic intracranial injuries on head CT scan acutely after TBI. METHODS: This prospective, multicentre observational trial included adults (>/=18 years) presenting to participating emergency departments with suspected, non-penetrating TBI and a Glasgow Coma Scale score of 9-15. Patients were eligible if they had undergone head CT as part of standard emergency care and blood collection within 12 h of injury. UCH-L1 and GFAP were measured in serum and analysed using prespecified cutoff values of 327 pg/mL and 22 pg/mL, respectively. UCH-L1 and GFAP assay results were combined into a single test result that was compared with head CT results. The primary study outcomes were the sensitivity and the negative predictive value (NPV) of the test result for the detection of traumatic intracranial injury on head CT. FINDINGS: Between Dec 6, 2012, and March 20, 2014, 1977 patients were recruited, of whom 1959 had analysable data. 125 (6%) patients had CT-detected intracranial injuries and eight (<1%) had neurosurgically manageable injuries. 1288 (66%) patients had a positive UCH-L1 and GFAP test result and 671 (34%) had a negative test result. For detection of intracranial injury, the test had a sensitivity of 0.976 (95% CI 0.931-0.995) and an NPV of 0.996 (0.987-0.999). In three (<1%) of 1959 patients, the CT scan was positive when the test was negative. INTERPRETATION: These results show the high sensitivity and NPV of the UCH-L1 and GFAP test. This supports its potential clinical role for ruling out the need for a CT scan among patients with TBI presenting at emergency departments in whom a head CT is felt to be clinically indicated. Future studies to determine the value added by this biomarker test to head CT clinical decision rules could be warranted. FUNDING: Banyan Biomarkers and US Army Medical Research and Materiel Command

    Neuropsychological Change After a Single Season of Head Impact Exposure in Youth Football

    Get PDF
    Objectives: Head impact exposure (HIE) in youth football is a public health concern. The objective of this study was to determine if one season of HIE in youth football was related to cognitive changes. Method: Over 200 participants (ages 9–13) wore instrumented helmets for practices and games to measure the amount of HIE sustained over one season. Pre- and post-season neuropsychological tests were completed. Test score changes were calculated adjusting for practice effects and regression to the mean and used as the dependent variables. Regression models were calculated with HIE variables predicting neuropsychological test score changes. Results: For the full sample, a small effect was found with season average rotational values predicting changes in list-learning such that HIE was related to negative score change: standardized beta ( β) = -.147, t(205) = -2.12, and p = .035. When analyzed by age clusters (9–10, 11–13) and adding participant weight to models, the R2 values increased. Splitting groups by weight (median split), found heavier members of the 9–10 cohort with significantly greater change than lighter members. Additionaly, significantly more participants had clinically meaningful negative changes: X2 = 10.343, p = .001. Conclusion: These findings suggest that in the 9–10 age cluster, the average seasonal level of HIE had inverse, negative relationships with cognitive change over one season that was not found in the older group. The mediation effects of age and weight have not been explored previously and appear to contribute to the effects of HIE on cognition in youth football players
    corecore