1,221 research outputs found

    Coupling ocean currents and waves with wind stress over the Gulf Stream

    Get PDF
    This study provides the first detailed analysis of oceanic and atmospheric responses to the current-stress, wave-stress, and wave-current-stress interactions around the Gulf Stream using a high-resolution three-way coupled regional modeling system. In general, our results highlight the substantial impact of coupling currents and/or waves with wind stress on the air–sea fluxes over the Gulf Stream. The stress and the curl of the stress are crucial to mixed-layer energy budgets and sea surface temperature. In the wave-current-stress coupled experiment, wind stress increased by 15% over the Gulf Stream. Alternating positive and negative bands of changes of Ekman-related vertical velocity appeared in response to the changes of the wind stress curl along the Gulf Stream, with magnitudes exceeding 0.3 m/day (the 95th percentile). The response of wind stress and its curl to the wave-current-stress coupling was not a linear combination of responses to the wave-stress coupling and the current-stress coupling because the ocean and wave induced changes in the atmosphere showed substantial feedback on the ocean. Changes of a latent heat flux in excess of 20 W/m2 and a sensible heat flux in excess of 5 W/m2 were found over the Gulf Stream in all coupled experiments. Sensitivity tests show that sea surface temperature (SST) induced difference of air–sea humidity is a major contributor to latent heat flux (LHF) change. Validation is challenging because most satellite observations lack the spatial resolution to resolve the current-induced changes in wind stress curls and heat fluxes. Scatterometer observations can be used to examine the changes in wind stress across the Gulf Stream. The conversion of model data to equivalent neutral winds is highly dependent on the physics considered in the air–sea turbulent fluxes, as well as air–sea temperature differences. This sensitivity is shown to be large enough that satellite observations of winds can be used to test the flux parameterizations in coupled models

    Upper-ocean response to precipitation forcing in an ocean model hindcast of Hurricane Gonzalo

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11),(2020): 3219–3234, https://doi.org/10.1175/JPO-D-19-0277.1.Preexisting, oceanic barrier layers have been shown to limit turbulent mixing and suppress mixed layer cooling during the forced stage of a tropical cyclone (TC). Furthermore, an understanding of barrier layer evolution during TC passage is mostly unexplored. High precipitation rates within TCs provide a large freshwater flux to the surface that alters upper-ocean stratification and can act as a potential mechanism to strengthen the barrier layer. Ocean glider observations from the Bermuda Institute of Ocean Sciences (BIOS) indicate that a strong barrier layer developed during the approach and passage of Hurricane Gonzalo (2014), primarily as a result of freshening within the upper 30 m of the ocean. Therefore, an ocean model case study of Hurricane Gonzalo has been designed to investigate how precipitation affects upper-ocean stratification and sea surface temperature (SST) cooling during TC passage. Ocean model hindcasts of Hurricane Gonzalo characterize the upper-ocean response to TC precipitation forcing. Three different vertical mixing parameterizations are tested to determine their sensitivity to precipitation forcing. For all turbulent mixing schemes, TC precipitation produces near-surface freshening of about 0.3 psu, which is consistent with previous studies and in situ ocean observations. The influence of precipitation-induced changes to the SST response is more complicated, but generally modifies SSTs by ±0.3°C. Precipitation forcing creates a dynamical coupling between upper-ocean stratification and current shear that is largely responsible for the heterogeneous response in modeled SSTs.This work was supported by the National Aeronautics and Space Administration (NASA; Grant NNX15AD45G) and the National Oceanic and Atmospheric Administration (NOAA; Grant NA11OAR4320199)

    Odin–OSIRIS detection of the Chelyabinsk meteor

    Get PDF
    On 15 February 2013 an 11 000 ton meteor entered Earth's atmosphere southeast of Chelyabinsk, creating a large fireball at 23 km altitude. The resulting stratospheric aerosol loading was detected by the Ozone Mapping and Profiler Suite (OMPS) in a high-altitude polar belt. This work confirms the presence and lifetime of the stratospheric debris using the Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite. Although OSIRIS coverage begins in mid-March, the measurements show a belt of enhanced scattering near 35 km altitude between 50° N and 70° N. Initially, enhancements show increased scattering of up to 15% over the background conditions, decaying in intensity and dropping in altitude until they are indistinguishable from background conditions by mid-May. An inversion is also attempted using the standard OSIRIS processing algorithm to determine the extinction in the meteoric debris

    Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra

    No full text
    International audienceRecent work has shown that the retrieval of stratospheric aerosol vertical profiles is possible using limb scattered sunlight measurements at optical wavelengths. The aerosol number density profile is retrieved for an assumed particle size distribution and composition. This result can be used to derive the extinction at the measured wavelength. However, large systematic error can result from the uncertainty in the assumed size distribution when the result is used to estimate the extinction at other wavelengths. It is shown in this work that the addition of information obtained from the near infrared limb radiance profile at 1530 nm measured by the imaging module of the OSIRIS instrument yields an indication of the aerosol size distribution profile that can be used to improve the fidelity of the retrievals. A comparison of the estimated extinction profile at 1020 nm with coincident occultation measurements demonstrates agreement to within approximately 15% from 12 to 27 km altitude

    An Introduction to Superconducting Qubits and Circuit Quantum Electrodynamics

    Full text link
    A subset of the concepts of circuit quantum electrodynamics are reviewed as a reference to the Axion Dark Matter Experiment (ADMX) community as part of the proceedings of the 2nd Workshop on Microwave Cavities and Detectors for Axion Research. The classical Lagrangians and Hamiltonians for an LC circuit are discussed along with black box circuit quantization methods for a weakly anharmonic qubit coupled to a resonator or cavity

    Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison

    Get PDF
    The scattered sunlight measurements made by the Optical Spectrograph and InfraRed Imaging System (OSIRIS) on the Odin spacecraft are used to retrieve vertical profiles of stratospheric aerosol extinction at 750 nm. The recently released OSIRIS Version 5 data product contains the first publicly released stratospheric aerosol extinction retrievals, and these are now available for the entire Odin mission, which extends from the present day back to launch in 2001. A proof-of-concept study for the retrieval of stratospheric aerosol extinction from limb scatter measurements was previously published and the Version 5 data product retrievals are based on this work, but incorporate several important improvements to the algorithm. One of the primary changes is the use of a new retrieval vector that greatly improves the sensitivity to aerosol scattering by incorporating a forward modeled calculation of the radiance from a Rayleigh atmosphere. Additional improvements include a coupled retrieval of the effective albedo, a new method for normalization of the retrieval vector to improve signal-to-noise, and the use of an initial guess that is representative of very low background aerosol loading conditions, which allows for maximal retrieval range. Furthermore, the Version 5 data set is compared to Stratospheric Aerosol and Gas Experiment (SAGE) III 755 nm extinction profiles during the almost four years of mission overlap from 2002 to late 2005. The vertical structure in coincident profile measurements is well correlated and the statistics on a relatively large set of tight coincident measurements show agreement between the measurements from the two instruments to within approximately 10% throughout the 15 to 25 km altitude range, which covers the bulk of the stratospheric aerosol layer for the mid and high latitude cases studied here

    Collective modes of CP(3) Skyrmion crystals in quantum Hall ferromagnets

    Full text link
    The two-dimensional electron gas in a bilayer quantum Hall system can sustain an interlayer coherence at filling factor nu=1 even in the absence of tunneling between the layers. This system has low-energy charged excitations which may carry textures in real spin or pseudospin. Away from filling factor nu =1 a finite density of these is present in the ground state of the 2DEG and forms a crystal. Depending on the relative size of the various energy scales, such as tunneling (Delta_SAS), Zeeman coupling (Delta_Z) or electrical bias (Delta_b), these textured crystal states can involve spin, pseudospin, or both intertwined. In this article, we present a comprehensive numerical study of the collective excitations of these textured crystals using the GRPA. For the pure spin case, at finite Zeeman coupling the state is a Skyrmion crystal with a gapless phonon mode, and a separate Goldstone mode that arises from a broken U(1) symmetry. At zero Zeeman coupling, we demonstrate that the constituent Skyrmions break up, and the resulting state is a meron crystal with 4 gapless modes. In contrast, a pure pseudospin Skyrme crystal at finite tunneling has only the phonon mode. For Delta_SAS=0, the state evolves into a meron crystal and supports an extra gapless U(1) mode in addition to the phonon. For a CP(3) Skyrmion crystal, we find a U(1) gapless mode in the presence of the symmetry-breaking fields. In addition, a second mode with a very small gap is present in the spectrum.Comment: 16 pages and 12 eps figure
    • …
    corecore