264 research outputs found

    Mie plasmons: modes volumes, quality factors and coupling strengths (Purcell factor) to a dipolar emitter

    Get PDF
    Using either quasi-static approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor QnQ_n and define the effective volume VnV_n of the nthn^{th} mode in a such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio Qn/VnQ_n/V_n (Purcell factor). The role of Joule losses, far-field scattering and mode confinement in the coupling mechanism are introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.Comment: (in press) International Journal of Optics (2011

    Purcell factor for point-like dipolar emitter coupling to 2D-plasmonic waveguides

    Full text link
    We theoretically investigate the spontaneous emission of a point--like dipolar emitter located near a two--dimensional (2D) plasmonic waveguide of arbitrary form. We invoke an explicite link with the density of modes of the waveguide describing the electromagnetic channels into which the emitter can couple. We obtain a closed form expression for the coupling to propagative plasmon, extending thus the Purcell factor to plasmonic configurations. Radiative and non-radiative contributions to the spontaneous emission are also discussed in details

    Meta-material photonic funnels for sub-diffraction light compression and propagation

    Full text link
    We present waveguides with photonic crystal cores, supporting energy propagation in subwavelength regions with a mode structure similar to that in telecom fibers. We design meta-materials for near-, mid-, and far-IR frequencies, and demonstrate efficient energy transfer to and from regions smaller than 1/25-th of the wavelength. Both positive- and negative-refractive index light transmissions are shown. Our approach, although demonstrated here in circular waveguides for some specific frequencies, is easily scalable from optical to IR to THz frequency ranges, and can be realized in a variety of waveguide geometries. Our design may be used for ultra high-density energy focusing, nm-resolution sensing, near-field microscopy, and high-speed all-optical computing.Comment: 4 pages, 3 figures, texify read

    Near-field properties of plasmonic nanostructures with high aspect ratio

    Full text link
    Using the Green's dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretizing the object with cells with aspect ratios similar to the object's aspect ratio improves the computations, without degrading the convergency. We also compare our numerical simulations to finite element method and discuss further possible improvements

    Pre-determining the location of electromigrated gaps by nonlinear optical imaging

    Full text link
    In this paper we describe a nonlinear imaging method employed to spatially map the occurrence of constrictions occurring on an electrically-stressed gold nanowire. The approach consists at measuring the influence of a tightly focused ultrafast pulsed laser on the electronic transport in the nanowire. We found that structural defects distributed along the nanowire are efficient nonlinear optical sources of radiation and that the differential conductance is significantly decreased when the laser is incident on such electrically-induced morphological changes. This imaging technique is applied to pre-determined the location of the electrical failure before it occurs.Comment: 3 figure

    Interference of surface plasmon polaritions controlled by the phase of incident light

    Full text link
    Interference patterns of surface plasmon polaritons(SPPs) are observed in the extraordinary optical transmission through subwavelength holes in optically thick metal plate. It is found that the phase of incident light can be transferred to SPPs. We can control the destructive and constructive interference of SPPs by modulating the relative phase between two incident beams. Using a slightly displaced Mach-Zehnder interferometer, we also observe a SPPs interference pattern composed of bright and dark stripes.Comment: 3pages,5figure
    • …
    corecore