220 research outputs found

    Lipopolysaccharide-enhanced, Toll-like Receptor 4–dependent T Helper Cell Type 2 Responses to Inhaled Antigen

    Get PDF
    Allergic asthma is an inflammatory lung disease initiated and directed by T helper cells type 2 (Th2). The mechanism involved in generation of Th2 responses to inert inhaled antigens, however, is unknown. Epidemiological evidence suggests that exposure to lipopolysaccharide (LPS) or other microbial products can influence the development and severity of asthma. However, the mechanism by which LPS influences asthma pathogenesis remains undefined. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 (Th1) responses, it is unclear if TLRs are needed for Th2 priming. Here, we report that low level inhaled LPS signaling through TLR4 is necessary to induce Th2 responses to inhaled antigens in a mouse model of allergic sensitization. The mechanism by which LPS signaling results in Th2 sensitization involves the activation of antigen-containing dendritic cells. In contrast to low levels, inhalation of high levels of LPS with antigen results in Th1 responses. These studies suggest that the level of LPS exposure can determine the type of inflammatory response generated and provide a potential mechanistic explanation of epidemiological data on endotoxin exposure and asthma prevalence

    High throughput sequencing in mice: a platform comparison identifies a preponderance of cryptic SNPs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allelic variation is the cornerstone of genetically determined differences in gene expression, gene product structure, physiology, and behavior. However, allelic variation, particularly cryptic (unknown or not annotated) variation, is problematic for follow up analyses. Polymorphisms result in a high incidence of false positive and false negative results in hybridization based analyses and hinder the identification of the true variation underlying genetically determined differences in physiology and behavior. Given the proliferation of mouse genetic models (e.g., knockout models, selectively bred lines, heterogeneous stocks derived from standard inbred strains and wild mice) and the wealth of gene expression microarray and phenotypic studies using genetic models, the impact of naturally-occurring polymorphisms on these data is critical. With the advent of next-generation, high-throughput sequencing, we are now in a position to determine to what extent polymorphisms are currently cryptic in such models and their impact on downstream analyses.</p> <p>Results</p> <p>We sequenced the two most commonly used inbred mouse strains, DBA/2J and C57BL/6J, across a region of chromosome 1 (171.6 – 174.6 megabases) using two next generation high-throughput sequencing platforms: Applied Biosystems (SOLiD) and Illumina (Genome Analyzer). Using the same templates on both platforms, we compared realignments and single nucleotide polymorphism (SNP) detection with an 80 fold average read depth across platforms and samples. While public datasets currently annotate 4,527 SNPs between the two strains in this interval, thorough high-throughput sequencing identified a total of 11,824 SNPs in the interval, including 7,663 new SNPs. Furthermore, we confirmed 40 missense SNPs and discovered 36 new missense SNPs.</p> <p>Conclusion</p> <p>Comparisons utilizing even two of the best characterized mouse genetic models, DBA/2J and C57BL/6J, indicate that more than half of naturally-occurring SNPs remain cryptic. The magnitude of this problem is compounded when using more divergent or poorly annotated genetic models. This warrants full genomic sequencing of the mouse strains used as genetic models.</p

    Immune cell proportions correlate with clinicogenomic features and ex vivo drug responses in acute myeloid leukemia

    Get PDF
    IntroductionThe implementation of small-molecule and immunotherapies in acute myeloid leukemia (AML) has been challenging due to genetic and epigenetic variability amongst patients. There are many potential mechanisms by which immune cells could influence small-molecule or immunotherapy responses, yet, this area remains understudied.MethodsHere we performed cell type enrichment analysis from over 560 AML patient bone marrow and peripheral blood samples from the Beat AML dataset to describe the functional immune landscape of AML.ResultsWe identify multiple cell types that significantly correlate with AML clinical and genetic features, and we also observe significant correlations of immune cell proportions with ex vivo small-molecule and immunotherapy responses. Additionally, we generated a signature of terminally exhausted T cells (Tex) and identified AML with high monocytic proportions as strongly correlating with increased proportions of these immunosuppressive T cells.DiscussionOur work, which is accessible through a new “Cell Type” module in our visualization platform (Vizome; http://vizome.org/), can be leveraged to investigate potential contributions of different immune cells on many facets of the biology of AML

    Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms.

    Get PDF
    FLT3 mutations are prevalent in AML patients and confer poor prognosis. Crenolanib, a potent type I pan-FLT3 inhibitor, is effective against both internal tandem duplications and resistance-conferring tyrosine kinase domain mutations. While crenolanib monotherapy has demonstrated clinical benefit in heavily pretreated relapsed/refractory AML patients, responses are transient and relapse eventually occurs. Here, to investigate the mechanisms of crenolanib resistance, we perform whole exome sequencing of AML patient samples before and after crenolanib treatment. Unlike other FLT3 inhibitors, crenolanib does not induce FLT3 secondary mutations, and mutations of the FLT3 gatekeeper residue are infrequent. Instead, mutations of NRAS and IDH2 arise, mostly as FLT3-independent subclones, while TET2 and IDH1 predominantly co-occur with FLT3-mutant clones and are enriched in crenolanib poor-responders. The remaining patients exhibit post-crenolanib expansion of mutations associated with epigenetic regulators, transcription factors, and cohesion factors, suggesting diverse genetic/epigenetic mechanisms of crenolanib resistance. Drug combinations in experimental models restore crenolanib sensitivity.This work was supported in part by The Leukemia & Lymphoma Society Beat AML Program, the V Foundation for Cancer Research, the Gabrielle’s Angel Foundation for Cancer Research and the National Cancer Institute (1R01CA183947–01; 1U01CA217862–01; 1U54CA224019-01; 3P30CA069533-18S5). H.Z. received a Collins Medical Trust research grant. S.D.B. was supported by the National Cancer Institute (5R01CA138744-08)

    A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity

    Get PDF
    Influenza viruses pose a significant health risk and annually impose a great cost to patients and the health care system. The molecular determinants of influenza severity, often exacerbated by secondary bacterial infection, are largely unclear. We generated a novel outbred mouse model of influenza virus, Staphylococcus aureus, and coinfection utilizing influenza A/CA/07/2009 virus and S. aureus (USA300). Outbred mice displayed a wide range of pathologic phenotypes following influenza virus or co-infection ranging broadly in severity. Influenza viral burden positively correlated with weight loss although lung histopathology did not. Inflammatory cytokines including IL-6, TNF-α, G-CSF, and CXCL10 positively correlated with both weight loss and viral burden. In S. aureus infection, IL-1β, G-CSF, TNF-α, and IL-6 positively correlated with weight loss and bacterial burden. In co-infection, IL-1β production correlated with decreased weight loss suggesting a protective role. The data demonstrate an approach to identify biomarkers of severe disease and to understand pathogenic mechanisms in pneumonia. © 2013 McHugh et al

    Multiple Wnt/ß-Catenin Responsive Enhancers Align with the MYC Promoter through Long-Range Chromatin Loops

    Get PDF
    Inappropriate activation of c-Myc (MYC) gene expression by the Wnt/ß-catenin signaling pathway is required for colorectal carcinogenesis. The elevated MYC levels in colon cancer cells are attributed in part to ß-catenin/TCF4 transcription complexes that are assembled at proximal Wnt/ß-catenin responsive enhancers (WREs). Recent studies suggest that additional WREs that control MYC expression reside far upstream of the MYC transcription start site. Here, I report the characterization of five novel WREs that localize to a region over 400 kb upstream from MYC. These WREs harbor nucleosomes with post-translational histone modifications that demarcate enhancer and gene promoter regions. Using quantitative chromatin conformation capture, I show that the distal WREs are aligned with the MYC promoter through large chromatin loops. The chromatin loops are not restricted to colon cancer cells, but are also found in kidney epithelial and lung fibroblast cell lines that lack de-regulated Wnt signaling and nuclear ß-catenin/TCF4 complexes. While each chromatin loop is detected in quiescent cells, the positioning of three of the five distal enhancers with the MYC promoter is induced by serum mitogens. These findings suggest that the architecture of the MYC promoter is comprised of distal elements that are juxtaposed through large chromatin loops and that ß-catenin/TCF4 complexes utilize this conformation to activate MYC expression in colon cancer cells
    corecore