3,897 research outputs found

    Hadronic models of blazars require a change of the accretion paradigm

    Full text link
    We study hadronic models of broad-band emission of jets in radio-loud active galactic nuclei, and their implications for the accretion in those sources. We show that the models that account for broad-band spectra of blazars emitting in the GeV range in the sample of Boettcher et al. have highly super-Eddington jet powers. Furthermore, the ratio of the jet power to the radiative luminosity of the accretion disc is ∼3000\sim 3000 on average and can be as high as ∼105\sim 10^5. We then show that the measurements of the radio core shift for the sample imply low magnetic fluxes threading the black hole, which rules out the Blandford-Znajek mechanism to produce powerful jets. These results require that the accretion rate necessary to power the modelled jets is extremely high, and the average radiative accretion efficiency is ∼4×10−5\sim 4 \times 10^{-5}. Thus, if the hadronic model is correct, the currently prevailing picture of accretion in AGNs needs to be significantly revised. Also, the obtained accretion mode cannot be dominant during the lifetimes of the sources, as the modelled very high accretion rates would result in too rapid growth of the central supermassive black holes. Finally, the extreme jet powers in the hadronic model are in conflict with the estimates of the jet power by other methods.Comment: MNRAS, in pres

    The Spectra of Large Toeplitz Band Matrices with a Randomly Perturbed Entry

    Get PDF
    This report is concerned with the union spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) of all possible spectra that may emerge when perturbing a large n×nn \times n Toeplitz band matrix Tn(a)T_{n}(a) in the (j,k)(j,k) site by a number randomly chosen from some set Ω\Omega. The main results give descriptive bounds and, in several interesting situations, even provide complete identifications of the limit of spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) as n→∞n \to \infty. Also discussed are the cases of small and large sets Ω\Omega as well as the "discontinuity of the infinite volume case", which means that in general spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) does not converge to something close to spΩ(j,k)Tn(a)sp_{\Omega}^{(j,k)}T_{n}(a) as n→∞n \to \infty, where T(a)T(a) is the corresponding infinite Toeplitz matrix. Illustrations are provided for tridiagonal Toeplitz matrices, a notable special case. \ud \ud The second author was supported by UK Enginering and Physical Sciences Research Council Grant GR/M1241
    • …
    corecore