294 research outputs found

    Nest site selection by sea turtles

    Full text link
    The distribution of 38 nests of loggerhead turtles (Caretta caretta) on beaches on Sanibel and Captiva islands, south-western Florida (26°26\u27N 82°16\u27W), and of 70 first digging attempts by green turtles (Chelonia mydas) on Ascension Island (7°57\u27S 14°22\u27W), was quantified. For loggerhead turtles on Sanibel and Captiva, nests were clumped close to the border between the open sand and the supra-littoral vegetation that backed the beaches. This spatial pattern of nests was closely reproduced by assuming simply that turtles crawled a random distance above the most recent high water line prior to digging. In contrast, green turtles on Ascension Island clumped their first digging attempts on the uneven beach above the springs high water line, crawling up to 80 m to reach this beach zone

    A cDNA microarray approach to decipher sunflower (Helianthus annuus) responses to the necrotrophic fungus Phoma macdonaldii

    Get PDF
    To identify the genes involved in the partial resistance of sunflower (Helianthus annuus) to the necrotrophic fungus Phoma macdonaldii, we developed a 1000‐element cDNA microarray containing carefully chosen genes putatively involved in primary metabolic pathways, signal transduction and biotic stress responses. A two‐pass general linear model was used to normalize the data and then to detect differentially expressed genes. This method allowed us to identify 38 genes differentially expressed among genotypes, treatments and times, mainly belonging to plant defense, signaling pathways and amino acid metabolism. Based on a set of genes whose differential expression was highly significant, we propose a model in which negative regulation of a dual‐specificity MAPK phosphatase could be implicated in sunflower defense mechanisms against the pathogen. The resulting activation of the MAP kinase cascade could subsequently trigger defense responses (e.g. thaumatin biosynthesis and phenylalanine ammonia lyase activation), under the control of transcription factors belonging to MYB and WRKY families. Concurrently, the activation of protein phosphatase 2A (PP2A), which is implicated in cell death inhibition, could limit pathogen development. The results reported here provide a valuable first step towards the understanding and analysis of the P. macdonaldii–sunflower interaction

    Monitoring the Crosstalk Between the Estrogen Receptor and Human Epidermal Growth Factor Receptor 2 with PET

    Get PDF
    Purpose: Ovarian cancer (OC) leads to poor survival rates mainly due to late stage detection and innate or acquired resistance to chemotherapy. Thus, efforts have been made to exploit the estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) to treat OC. However, patients eventually become resistant to these treatments as well. HER2 overexpression contributes to the acquired resistance to ER-targeted treatment. Trastuzumab treatment, on the other hand, can result in increased expression of ER, which, in turn, increases the sensitivity of the tumors towards anti-estrogen therapy. More insight into the crosstalk between ER and HER2 signaling could improve our knowledge about acquired resistance in ovarian cancer. The aim of this study was to evaluate whether PET could be used to detect changes in ER expression induced by HER2-targeted treatment in vivo. Procedures: Male athymic nude mice were subcutaneously (sc) inoculated with 106 SKOV3 human ovarian cancer cells (HER2+/ER+). Two weeks after inoculation, tumor-bearing mice were treated intraperitoneally with either vehicle, the HER2 antibody trastuzumab (20 mg/kg, 2×/week), or the HER2-tyrosine kinase inhibitor lapatinib (40 mg/kg, 5 days/week) for 2 weeks. Thereafter, ER expression in the tumor was assessed by PET imaging with 16α-[18F]-fluoro-17β-estradiol ([18F]FES). Tumors were excised for ex vivo ER and HER2 measurement with Western blotting and immunohistochemistry. Results: All treatments led to smaller tumors than vehicle-treated tumors. Higher [18F]FES maximum standardize tumor uptake (SUVmax) was observed in animals treated with trastuzumab (+ 29 %, P = 0.002) or lapatinib (+ 20 %, P = 0.096) than in vehicle-treated controls. PET results were in agreement with ex vivo analyses. Conclusion: FES-PET imaging can detect changes in ER expression induced by HER2-targeted treatment and therefore can be used to investigate the crosstalk between ER and HER2 in a noninvasive manner

    Hypoxia Inducible Factor 3α Plays a Critical Role in Alveolarization and Distal Epithelial Cell Differentiation during Mouse Lung Development

    Get PDF
    Lung development occurs under relative hypoxia and the most important oxygen-sensitive response pathway is driven by Hypoxia Inducible Factors (HIF). HIFs are heterodimeric transcription factors of an oxygen-sensitive subunit, HIFα, and a constitutively expressed subunit, HIF1β. HIF1α and HIF2α, encoded by two separate genes, contribute to the activation of hypoxia inducible genes. A third HIFα gene, HIF3α, is subject to alternative promoter usage and splicing, leading to three major isoforms, HIF3α, NEPAS and IPAS. HIF3α gene products add to the complexity of the hypoxia response as they function as dominant negative inhibitors (IPAS) or weak transcriptional activators (HIF3α/NEPAS). Previously, we and others have shown the importance of the Hif1α and Hif2α factors in lung development, and here we investigated the role of Hif3α during pulmonary development. Therefore, HIF3α was conditionally expressed in airway epithelial cells during gestation and although HIF3α transgenic mice were born alive and appeared normal, their lungs showed clear abnormalities, including a post-pseudoglandular branching defect and a decreased number of alveoli. The HIF3α expressing lungs displayed reduced numbers of Clara cells, alveolar epithelial type I and type II cells. As a result of HIF3α expression, the level of Hif2α was reduced, but that of Hif1α was not affected. Two regulatory genes, Rarβ, involved in alveologenesis, and Foxp2, a transcriptional repressor of the Clara cell specific Ccsp gene, were significantly upregulated in the HIF3α expressing lungs. In addition, aberrant basal cells were observed distally as determined by the expression of Sox2 and p63. We show that Hif3α binds a conserved HRE site in the Sox2 promoter and weakly transactivated a reporter construct containing the Sox2 promoter region. Moreover, Hif3α affected the expression of genes not typically involved in the hypoxia response, providing evidence for a novel function of Hif3α beyond the hypoxia response

    Unique tracheal fluid microRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia

    Get PDF
    "Epub ahead of print 2015 Jan 5"OBJECTIVE AND BACKGROUND: Our objective was to determine the fetal in vivo microRNA signature in hypoplastic lungs of human fetuses with severe isolated congenital diaphragmatic hernia (CDH) and changes in tracheal and amniotic fluid of fetuses undergoing fetoscopic endoluminal tracheal occlusion (FETO) to reverse severe lung hypoplasia due to CDH. METHODS:: We profiled microRNA expression in prenatal human lungs by microarray analysis. We then validated this signature with real-time quantitative polymerase chain reaction in tracheal and amniotic fluid of CDH patients undergoing FETO. We further explored the role of miR-200b using semiquantitative in situ hybridization and immunohistochemistry for TGF-ß2 in postnatal lung sections. We investigated miR-200b effects on TGF-ß signaling using a SMAD-luciferase reporter assay and Western blotting for phospho-SMAD2/3 and ZEB-2 in cultures of human bronchial epithelial cells. RESULTS:: CDH lungs display an increased expression of 2 microRNAs: miR-200b and miR-10a as compared to control lungs. Fetuses undergoing FETO display increased miR-200 expression in their tracheal fluid at the time of balloon removal. Future survivors of FETO display significantly higher miR-200 expression than those with a limited response. miR-200b was expressed in bronchial epithelial cells and vascular endothelial cells. TGF-ß2 expression was lower in CDH lungs. miR-200b inhibited TGF-ß-induced SMAD signaling in cultures of human bronchial epithelial cells. CONCLUSIONS:: Human fetal hypoplastic CDH lungs have a specific miR-200/miR-10a signature. Survival after FETO is associated with increased miR-200 family expression. miR-200b overexpression in CDH lungs results in decreased TGF-ß/SMAD signaling
    corecore