41 research outputs found

    Impedance of Electron Beam Vacuum Chambers for the Nsls-Ii Storage Ring.

    Get PDF
    In this paper we discuss computation of the coupling impedance of the vacuum chambers for the NSLS-II storage ring using the electromagnetic simulator GdfidL [1]. The impedance of the vacuum chambers depends on the geometric dimensions of the cross-section and height of the slot in the chamber wall. Of particular concern is the complex geometry of the infrared extraction chambers to be installed in special large-gap dipole magnets. In this case, wakefields are generated due to tapered transitions and large vertical-aperture ports with mirrors near the electron beam

    Preliminary Impedance Budget for Nsls-Ii Storage Ring.

    Get PDF
    The wakefield and impedance produced by the components of the NSLS-II storage ring have been computed for an electron bunch length of 3mm rms. The results are summarized in a table giving for each component, the loss factor ({kappa}{sub {parallel}}), the imaginary part of the longitudinal impedance at low frequency divided by the revolution harmonic (ImZ{sub {parallel}}/n), and the transverse kick factors ({kappa}{sub x}, {kappa}{sub y})

    Coupling Impedance of Cesr-B Rf Cavity for the Nsls-Ii Storage Ring.

    Get PDF
    CESR-B type superconducting cavities are under consideration for acceleration of the electron beam in the 3GeV NSLS-II storage ring. In this paper we present detailed investigation of longitudinal and transverse impedance of CESR-B cavity and transitions. Ferrite material is included in impedance analysis. Its effect on short range wake potential has been studied using GdfidL code. The summary results of loss factors and kick factors are presented for a 3mm rms bunch length

    BPM Button Optimization to Minimize Distortion Due to Trapped Mode Heating

    Get PDF
    Abstract The outer circumference of a BPM button and the inner circumference of the button housing comprise a transmission line. This transmission line typically presents an impedance of a few tens of ohms to the beam, and couples very weakly to the 50 ohm coaxial transmission line that comprises the signal path out of the button. The modes which are consequently excited and trapped often have quality factors of several hundred, permitting resonant excitation by the beam. The thermal distortion resulting from trapped mode heating is potentially problematic for achieving the high precision beam position measurements needed to provide the submicron beam position stability required by light source users. We present a button design that has been optimized via material selection and component geometry to minimize both the trapped mode heating and the resulting thermal distortion
    corecore