250 research outputs found

    C16-Ceramide Analog Combined with Pc 4 Photodynamic Therapy Evokes Enhanced Total Ceramide Accumulation, Promotion of DEVDase Activation in the Absence of Apoptosis, and Augmented Overall Cell Killing

    Get PDF
    Because of the failure of single modality approaches, combination therapy for cancer treatment is a promising alternative. Sphingolipid analogs, with or without anticancer drugs, can improve tumor response. C16-pyridinium ceramide analog LCL30, was used in combination with photodynamic therapy (PDT), an anticancer treatment modality, to test the hypothesis that the combined treatment will trigger changes in the sphingolipid profile and promote cell death. Using SCCVII mouse squamous carcinoma cells, and the silicone phthalocyanine Pc 4 for PDT, we showed that combining PDT with LCL30 (PDT/LCL30) was more effective than individual treatments in raising global ceramide levels, as well as in reducing dihydrosphingosine levels. Unlike LCL30, PDT, alone or combined, increased total dihydroceramide levels. Sphingosine levels were unaffected by LCL30, but were abolished after PDT or the combination. LCL30-triggered rise in sphingosine-1-phosphate was reversed post-PDT or the combination. DEVDase activation was evoked after PDT or LCL30, and was promoted post- PDT/LCL30. Neither mitochondrial depolarization nor apoptosis were observed after any of the treatments. Notably, treatment with the combination resulted in augmented overall cell killing. Our data demonstrate that treatment with PDT/LCL30 leads to enhanced global ceramide levels and DEVDase activation in the absence of apoptosis, and promotion of total cell killing

    Ceramide Activates the Stress-activated Protein Kinases

    Get PDF
    Tumor necrosis factor alpha (TNF alpha) activates the stress-activated protein kinases (SAPKs, also known as Jun nuclear kinases or JNKs) resulting in the stimulation of AP-1-dependent gene transcription and induces the translocation of NF kappa B to the nucleus resulting in the stimulation of NF kappa B-dependent gene transcription. A potential second messenger for these signaling pathways is ceramide, which is generated when TNF alpha activates sphingomyelinases. We show that treatment of HL-60 human promyelocytic cells with exogenous sphingomyelinase leads to rapid stimulation of JNK/SAPK activity, an effect not mimicked by treatment with phospholipase A2, C, or D. Further, JNK/SAPK activity is stimulated 2.7- and 2.8-fold, respectively, in cells exposed to C2-ceramide (5 microM) or TNF alpha (10 ng/ml). The prolonged stimulation of this kinase activity by C2-ceramide is similar to that previously reported for TNF alpha. In contrast, the related mitogen-activated protein kinases ERK1 and ERK2 are weakly stimulated following TNF alpha treatment (1.5-fold) and are inhibited by C2-ceramide treatment. TNF alpha also potently stimulates NF-kappa B DNA binding activity and transcriptional activity, but these effects are not mimicked by addition of C2-ceramide or sphingomyelinase to intact cells. Furthermore, TNF alpha, sphingomyelinase, and C2-ceramide induce c-jun, a gene that is stimulated by the ATF-2 and c-Jun transcription factors. These data suggest that ceramide may act as a second messenger for a subset of TNF alpha's biochemical and biological effects

    Molecular Cloning and Characterization of a Human Mitochondrial Ceramidase

    Get PDF
    We have recently purified a rat brain membrane-bound nonlysosomal ceramidase (El Bawab, S., Bielawska, A., and Y. A. Hannun (1999) J. Biol. Chem. 274, 27948-27955). Using peptide sequences obtained from the purified rat brain enzyme, we report here the cloning of the human isoform. The deduced amino acid sequence of the protein did not show any similarity with proteins of known function but was homologous to three putative proteins from Arabidospis thaliana, Mycobacterium tuberculosis, and Dictyostelium discoideum. Several blocks of amino acids were highly conserved in all of these proteins. Analysis of the protein sequence revealed the presence at the N terminus of a signal peptide followed by a putative myristoylation site and a putative mitochondrial targeting sequence. The predicted molecular mass was 84 kDa, and the isoelectric point was 6.69, in agreement with rat brain purified enzyme. Northern blot analysis of multiple human tissues showed the presence of a major band corresponding to a size of 3.5 kilobase. Analysis of this major band on the blot indicated that the enzyme is ubiquitously expressed with higher levels in kidney, skeletal muscle, and heart. The enzyme was then overexpressed in HEK 293 and MCF7 cells using the pcDNA3. 1/His-ceramidase construct, and ceramidase activity (at pH 9.5) increased by 50- and 12-fold, respectively. Next, the enzyme was characterized using lysate of overexpressing cells. The results confirmed that the enzyme catalyzes the hydrolysis of ceramide in the neutral alkaline range and is independent of cations. Finally, a green fluorescent protein-ceramidase fusion protein was constructed to investigate the localization of this enzyme. The results showed that the green fluorescent protein-ceramidase fusion protein presented a mitochondrial localization pattern and colocalized with mitochondrial specific probes. These results demonstrate that this novel ceramidase is a mitochondrial enzyme, and they suggest the existence of a topologically restricted pathways of sphingolipid metabolism

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Mitochondrially targeted ceramide LCL-30 inhibits colorectal cancer in mice

    Get PDF
    The sphingolipid ceramide is intimately involved in the growth, differentiation, senescence, and death of normal and cancerous cells. Mitochondria are increasingly appreciated to play a key role in ceramide-induced cell death. Recent work showed the C16-pyridinium ceramide analogue LCL-30 to induce cell death in vitro by mitochondrial targeting. The aim of the current study was to translate these results to an in vivo model. We found that LCL-30 accumulated in mitochondria in the murine colorectal cancer cell line CT-26 and reduced cellular ATP content, leading to dose- and time-dependent cytotoxicity. Although the mitochondrial levels of sphingosine-1-phosphate (S1P) became elevated, transcription levels of ceramide-metabolising enzymes were not affected. In mice, LCL-30 was rapidly absorbed from the peritoneal cavity and cleared from the circulation within 24 h, but local peritoneal toxicity was dose-limiting. In a model of subcutaneous tumour inoculation, LCL-30 significantly reduced the proliferative activity and the growth rate of established tumours. Sphingolipid profiles in tumour tissue also showed increased levels of S1P. In summary, we present the first in vivo application of a long-chain pyridinium ceramide for the treatment of experimental metastatic colorectal cancer, together with its pharmacokinetic parameters. LCL-30 was an efficacious and safe agent. Future studies should identify an improved application route and effective partners for combination treatment

    C2-phytoceramide perturbs lipid rafts and cell integrity in Saccharomyces cerevisiae in a sterol-dependent manner

    Get PDF
    Specific ceramides are key regulators of cell fate, and extensive studies aimed to develop therapies based on ceramide-induced cell death. However, the mechanisms regulating ceramide cytotoxicity are not yet fully elucidated. Since ceramides also regulate growth and stress responses in yeast, we studied how different exogenous ceramides affect yeast cells. C2-phytoceramide, a soluble form of phytoceramides, the yeast counterparts of mammalian ceramides, greatly reduced clonogenic survival, particularly in the G2/M phase, but did not induce autophagy nor increase apoptotic markers. Rather, the loss of clonogenic survival was associated with PI positive staining, disorganization of lipid rafts and cell wall weakening. Sensitivity to C2-phytoceramide was exacerbated in mutants lacking Hog1p, the MAP kinase homolog of human p38 kinase. Decreasing sterol membrane content reduced sensitivity to C2-phytoceramide, suggesting sterols are the targets of this compound. This study identified a new function of C2-phytoceramide through disorganization of lipid rafts and induction of a necrotic cell death under hypo-osmotic conditions. Since lipid rafts are important in mammalian cell signaling and adhesion, our findings further support pursuing the exploitation of yeast to understand the basis of synthetic ceramides' cytotoxicity to provide novel strategies for therapeutic intervention in cancer and other diseases.This work was supported by Fundacao para a Ciencia e Tecnologia through projects PTDC/BIA-BCM/69448/2006 and PEst-C/BIA/UI4050/2011, and fellowships to A. P. (SFRH/BPD/65003) and F. A. (SFRH/BD/80934/2011), as well as by FEDER through POFC - COMPETE. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The challenge to verify ceramide's role of apoptosis induction in human cardiomyocytes - a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardioplegia and reperfusion of the myocardium may be associated with cardiomyocyte apoptosis and subsequent myocardial injury. In order to establish a pharmacological strategy for the prevention of these events, this study aimed to verify the reliability of our human cardiac model and to evaluate the pro-apoptotic properties of the sphingolipid second messenger ceramide and the anti-apoptotic properties of the acid sphingomyelinase inhibitor amitryptiline during simulated cardioplegia and reperfusion ex vivo.</p> <p>Methods</p> <p>Cardiac biopsies were retrieved from the right auricle of patients undergoing elective CABG before induction of cardiopulmonary bypass. Biopsies were exposed to <it>ex vivo </it>conditions of varying periods of cp/rep (30/10, 60/20, 120/40 min). Groups: I (untreated control, n = 10), II (treated control cp/rep, n = 10), III (cp/rep + ceramide, n = 10), IV (cp/rep + amitryptiline, n = 10) and V (cp/rep + ceramide + amitryptiline, n = 10). For detection of apoptosis anti-activated-caspase-3 and PARP-1 cleavage immunostaining were employed.</p> <p>Results</p> <p>In group I the percentage of apoptotic cardiomyocytes was significantly (p < 0.05) low if compared to group II revealing a time-dependent increase. In group III ceramid increased and in group IV amitryptiline inhibited apoptosis significantly (p < 0.05). In contrast in group V, under the influence of ceramide and amitryptiline the induction of apoptosis was partially suppressed.</p> <p>Conclusion</p> <p>Ceramid induces and amitryptiline suppresses apoptosis significantly in our ex vivo setting. This finding warrants further studies aiming to evaluate potential beneficial effects of selective inhibition of apoptosis inducing mediators on the suppression of ischemia/reperfusion injury in clinical settings.</p
    corecore