13 research outputs found

    Single-cell analysis reveals individual spore responses to simulated space vacuum

    Get PDF
    Outer space is a challenging environment for all forms of life, and dormant spores of bacteria have been frequently used to study the survival of terrestrial life in a space journey. Previous work showed that outer space vacuum alone can kill bacterial spores. However, the responses and mechanisms of resistance of individual spores to space vacuum are unclear. Here, we examined spores’ molecular changes under simulated space vacuum (~10−5 Pa) using micro-Raman spectroscopy and found that this vacuum did not cause significant denaturation of spore protein. Then, live-cell microscopy was developed to investigate the temporal events during germination, outgrowth, and growth of individual Bacillus spores. The results showed that after exposure to simulated space vacuum for 10 days, viability of spores of two Bacillus species was reduced up to 35%, but all spores retained their large Ca2 +-dipicolinic acid depot. Some of the killed spores did not germinate, and the remaining germinated but did not proceed to vegetative growth. The vacuum treatment slowed spore germination, and changed average times of all major germination events. In addition, viable vacuum-treated spores exhibited much greater sensitivity than untreated spores to dry heat and hyperosmotic stress. Among spores’ resistance mechanisms to high vacuum, DNA-protective α/β−type small acid-soluble proteins, and non- homologous end joining and base excision repair of DNA played the most important roles, especially against multiple cycles of vacuum treatment. Overall, these results give new insight into individual spore’s responses to space vacuum and provide new techniques for microorganism analysis at the single-cell level

    Biochemical constraints for survival under Martian conditions

    No full text
    A wide variety of terrestrial organisms, the so-called "anhydrobiotes," has learned to survive in a state of extreme dehydration in dry environments. Strategies for survival include the accumulation of certain polyols and nonreducing saccharides, which help to prevent damage to membranes and proteins, but at low water partial pressure DNA is also progressively damaged by various lesions, including strand breaks and cross-linking to proteins. These lesions, if they are not too numerous, can be repaired before the first replication step after rehydration, but long-term exposure to dry conditions finally diminishes the chances of survival as these lesions accumulate. If an organism has no chance to repair the accumulated DNA damage during intermittent periods of active life, survival will not exceed a few decades. The restriction of survival by dryness-induced DNA lesions is corroborated by new data on conidia of Aspergillus and the free plasmid pBR 322. Our results will be discussed with respect to the chance of finding dormant life or biochemical fossils on the surface of Mars

    Survival under vacuum

    No full text

    Survival of microorganisms under the extreme conditions of the Atacama Desert

    No full text
    Spores of Bacillus subtilis, conidia of Aspergillus niger, versicolor and ochraceus and cells of Deinococcus radiodurans have been exposed in the dark at two locations (at about 23 degrees S and 24 degrees S) in the Atacama Desert for up to 15 months. B. subtilis spores (survival approximately 15%) and A. niger conidia (survival approximately 30%) outlived the other species. The survival of the conidia and spores species was only slightly poorer than that of the corresponding laboratory controls. However, the Deinococcus radiodurans cells did not survive the desert exposure, because they are readily inactivated at relative humidities between 40 and 80% which typically occur during desert nights. Cellular monolayers of the dry spores and conidia have in addition been exposed to the full sun light for up to several hours. The solar fluences causing 63% loss in viability (F37-values) have been determined. These F37-values are compared with those determined at other global locations such as Punta Arenas (53 degrees S), Key Largo (25 degrees N) or Mainz (50 degrees N) during the same season. The solar UVB radiation kills even the most resistant microorganisms within a few hours due to DNA damages. The data are also discussed with respect to possible similarities between the climatic conditions of the recent Atacama Desert and the deserts of early Mars

    ERA-experiment "space biochemistry"

    No full text
    The general goal of the experiment was to study the response of anhydrobiotic (metabolically dormant) microorganisms (spores of Bacillus subtilis, cells of Deinococcus radiodurans, conidia of Aspergillus species) and cellular constituents (plasmid DNA, proteins, purple membranes, amino acids, urea) to the extremely dehydrating conditions of open space, in some cases in combination with irradiation by solar UV-light. Methods of investigation included viability tests, analysis of DNA damages (strand breaks, DNA-protein cross-links) and analysis of chemical effects by spectroscopic, electrophoretic and chromatographic methods. The decrease in viability of the microorganisms was as expected from simulation experiments in the laboratory. Accordingly, it could be correlated with the increase in DNA damages. The purple membranes, amino acids and urea were not measurably effected by the dehydrating condition of open space (in the dark). Plasmid DNA, however, suffered a significant amount of strand breaks under these conditions. The response of these biomolecules to high fluences of short wavelength solar UV-light is very complex. Only a brief survey can be given in this paper. The data on the relatively good survival of some of the microorganisms call for strict observance of COSPAR Planetary Protection Regulations during interplanetary space missions
    corecore