57 research outputs found

    Genetic Analysis of Growth Traits in White Boni Sheep Under the Central Highlands Region of Yemen

    Get PDF
    The data were collected from 1992 to 2009 of White Boni sheep maintained at the Regional Research Station in the Central Highlands of Yemen. Data were analyzed to study the growth related traits and their genetic control. The least square means for body weights were 2.26±0.67, 11.14±0.46 and 19.21±1.25 kg for birth weight (BW), weaning weight (WW), six-month weight (WM6), respectively. The pre-and post-weaning average daily weight gains (ADG1 and ADG2) were 106.04±4.98g and 46.21±8.36 g/ day. Significant differences associated with the year of lambing were observed in body weight and weight gain at different stages of growth. Males were heavier and had a higher weight gain than females at almost all stages of growth and differences tended to increase with age. Single-born lambs had a distinct advantage over those born in twin birth at all stages of growth. The lambs in the dam’s second to fourth parities were generally of heavier weight and higher daily weight gain than those in other parities. The heritabilities of all body weights, weight gains at different stages of growth were moderate (0.11-0.43). The phenotypic and genetic correlation among the different body weights were positive and high. The genetic correlations of the pre- and post-weaning average daily gains with body weights were hight to moderate, except BW with ADG2

    The microstructural record of porphyroclasts and matrix of partly serpentinized peridotite mylonites – from brittle and crystal-plastic deformation to dissolution–precipitation creep

    No full text
    We present microfabrics in high-pressure, metamorphic, partly serpentinized peridotite mylonites from the Voltri Massif, in which porphyroclasts and matrix record independent deformation events. The microfabrics are analysed using polarization microscopy and electron microscopy (SEM/EBSD, EMP). The mylonites contain diopside and olivine porphyroclasts originating from the mantle protolith embedded in a fine-grained matrix consisting mainly of antigorite and minor olivine and pyroxene. The porphyroclasts record brittle and crystal-plastic deformation of the peridotite at upper-mantle conditions and differential stresses of a few hundred MPa. After the peridotites became serpentinized, deformation occurred mainly by dissolution–precipitation creep resulting in a pronounced foliation of the antigorite matrix, crenulation cleavages and newly precipitated olivine and pyroxene from the pore fluid at sites of dilation, i.e. in strain shadows next to porphyroclasts and folded fine-grained antigorite layers. Antigorite reveals a pronounced associated shape preferred orientation (SPO) and crystallographic preferred orientation (CPO) with the basal (001) cleavage plane oriented in the foliation plane. In monomineralic antigorite aggregates at sites of stress concentration around porphyroclasts, a characteristically reduced grain size and deflecting CPO as well as sutured grain boundaries indicate also some contribution of crystal-plastic deformation and grain-boundary migration of antigorite. In contrast, the absence of any intragranular deformation features in newly precipitated olivine in strain shadows reveals that stresses were not sufficiently high to allow for significant dislocation creep of olivine at conditions at which antigorite is stable. The porphyroclast microstructures are not associated with the microstructures of the mylonitic matrix, but are inherited from an independent earlier deformation. The porphyroclasts record a high-stress deformation of the peridotite with dislocation creep of olivine in the upper mantle probably related to rifting processes, whereas the serpentinite matrix records dominantly dissolution–precipitation creep and low stresses during subduction and exhumation
    • 

    corecore