16 research outputs found

    The emergence of quantum capacitance in epitaxial graphene

    Get PDF
    We found an intrinsic redistribution of charge arises between epitaxial graphene, which has intrinsically n-type doping, and an undoped substrate. In particular, we studied in detail epitaxial graphene layers thermally elaborated on C-terminated 4H4H-SiCSiC (4H4H-SiCSiC (0001ˉ000{\bar{1}})). We have investigated the charge distribution in graphene-substrate systems using Raman spectroscopy. The influence of the substrate plasmons on the longitudinal optical phonons of the SiCSiC substrates has been detected. The associated charge redistribution reveals the formation of a capacitance between the graphene and the substrate. Thus, we give for the first time direct evidence that the excess negative charge in epitaxial monolayer graphene could be self-compensated by the SiCSiC substrate without initial doping. This induced a previously unseen redistribution of the charge-carrier density at the substrate-graphene interface. There a quantum capacitor appears, without resorting to any intentional external doping, as is fundamentally required for epitaxial graphene. Although we have determined the electric field existing inside the capacitor and revealed the presence of a minigap (≈4.3meV\approx 4.3meV) for epitaxial graphene on 4H4H-SiCSiC face terminated carbon, it remains small in comparison to that obtained for graphene on face terminated SiSi. The fundamental electronic properties found here in graphene on SiCSiC substrates may be important for developing the next generation of quantum technologies and electronic/plasmonic devices.Comment: 26 pages, 8 figures, available online as uncorrected proof, Journal of Materials Chemistry C (2016

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Modeling of Advanced Silicon Nanomaterial Synthesis Approach: From Reactive Thermal Plasma Jet to Nanosized Particles

    No full text
    A three-dimensional numerical modelling of a time-dependent, turbulent thermal plasma jet was developed to synthetize silicon nanopowder. Computational fluid dynamics and particle models were employed via COMSOL Multiphysics¼v. 5.4 (COMSOL AB, Stockholm, Sweden) to simulate fluid and particle motion in the plasma jet, as well as the heat dependency. Plasma flow and particle interactions were exemplified in terms of momentum, energy, and turbulence flow. The transport of nanoparticles through convection, diffusion, and thermophoresis were also considered. The trajectories and heat transfer of both plasma jet fields, and particles are represented. The swirling flow controls the plasma jet and highly affects the dispersion of the nanoparticles. We demonstrate a decrease in both particles’ velocity and temperature distribution at a higher carrier gas injection velocity. The increase in the particle size and number affects the momentum transfer, turbulence modulation, and energy of particles, and also reduces plasma jet parameters. On the other hand, the upstream flame significantly impacts the particle’s behavior under velocity and heat transfer variation. Our findings open the door for examining thermal plasma impact in nanoparticle synthesis, where it plays a major role in optimizing the growth parameters, ensuring high quality with a low-cost technique

    Raman Spectroscopy Imaging of Exceptional Electronic Properties in Epitaxial Graphene Grown on SiC

    No full text
    Graphene distinctive electronic and optical properties have sparked intense interest throughout the scientific community bringing innovation and progress to many sectors of academia and industry. Graphene manufacturing has rapidly evolved since its discovery in 2004. The diverse growth methods of graphene have many comparative advantages in terms of size, shape, quality and cost. Specifically, epitaxial graphene is thermally grown on a silicon carbide (SiC) substrate. This type of graphene is unique due to its coexistence with the SiC underneath which makes the process of transferring graphene layers for devices manufacturing simple and robust. Raman analysis is a sensitive technique extensively used to explore nanocarbon material properties. Indeed, this method has been widely used in graphene studies in fundamental research and application fields. We review the principal Raman scattering processes in SiC substrate and demonstrate epitaxial graphene growth. We have identified the Raman bands signature of graphene for different layers number. The method could be readily adopted to characterize structural and exceptional electrical properties for various epitaxial graphene systems. Particularly, the variation of the charge carrier concentration in epitaxial graphene of different shapes and layers number have been precisely imaged. By comparing the intensity ratio of 2D line and G line—“I2D/IG”—the density of charge across the graphene layers could be monitored. The obtained results were compared to previous electrical measurements. The substrate longitudinal optical phonon coupling “LOOPC” modes have also been examined for several epitaxial graphene layers. The LOOPC of the SiC substrate shows a precise map of the density of charge in epitaxial graphene systems for different graphene layers number. Correlations between the density of charge and particular graphene layer shape such as bubbles have been determined. All experimental probes show a high degree of consistency and efficiency. Our combined studies have revealed novel capacitor effect in diverse epitaxial graphene system. The SiC substrate self-compensates the graphene layer charge without any external doping. We have observed a new density of charge at the graphene—substrate interface. The located capacitor effects at epitaxial graphene-substrate interfaces give rise to an unexpected mini gap in graphene band structure

    Development of a Highly Efficient Optoelectronic Device Based on CuFeO<sub>2</sub>/CuO/Cu Composite Nanomaterials

    No full text
    Herein, an optoelectronic device synthesized from a CuFeO2/CuO/Cu nanocomposite was obtained through the direct combustion of Cu foil coated with Fe2O3 nanomaterials. The chemical, morphological, and optical properties of the nanocomposite were examined via different techniques, such as XRD, XPS, TEM, SEM, and UV/Vis spectrophotometer. The optical reflectance demonstrated a great enhancement in the CuFeO2 optical properties compared to CuO nanomaterials. Such enhancements were clearly distinguished through the bandgap values, which varied between 1.35 and 1.38 eV, respectively. The XRD and XPS analyses confirmed the chemical structure of the prepared materials. The produced current density (Jph) was studied in dark and light conditions, thereby confirming the obtained optoelectronic properties. The Jph dependency to monochromatic wavelength was also investigated. The Jph value was equal to 0.033 mA·cm−2 at 390 nm, which decreased to 0.031 mA·cm−2 at 508 nm, and then increased to 0.0315 mA·cm−2 at 636 nm. The light intensity effects were similarly inspected. The Jph values rose when the light intensities were augmented from 25 to 100 mW·cm−2 to reach 0.031 and 0.05 mA·cm−2, respectively. The photoresponsivity (R) and detectivity (D) values were found at 0.33 mA·W−1 and 7.36 × 1010 Jones at 390 nm. The produced values confirm the high light sensitivity of the prepared optoelectronic device in a broad optical region covering UV, Vis, and near IR, with high efficiency. Further works are currently being designed to develop a prototype of such an optoelectronic device so that it can be applied in industry

    Facile Preparation of Flexible Lateral 2D MoS<sub>2</sub> Nanosheets for Photoelectrochemical Hydrogen Generation and Optoelectronic Applications

    No full text
    Two-dimensional (2D) materials have attracted significant attention with their high optical response due to their interesting and unique fundamental phenomena. A lateral 2D MoS2 nanosheets was prepared via a facile one-step electrophoretic deposition method on polyethylene terephthalate (PET)/ITO. These nanosheets have been used as photoelectrode materials for photoelectrochemical (PEC) hydrogen generation and optoelectronics. The chemical structure and morphology were confirmed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Raman, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The optical absorbance of the 2D MoS2 nanosheets extended to the UV, Vis, and near-IR regions with a bandgap value of 1.59 eV. The testing of the prepared photoelectrode material, PET/ITO/MoS2, was carried out through a three-electrode system, in which the current density (Jph) value represents the rate of H2 gas evaluated. The Jph enhanced under light illumination compared to the dark conditions with values of 0.4 to 0.98 mA·cm−2, respectively. The produced photocurrent at V = 0 V was 0.44 mA·cm−2. This confirms the great abilities of the PET/ITO/MoS2 photoelectrode in light detection and hydrogen generation with high photoresponsivity values. Soon, our team will work on the development of a prototype of this three-electrode cell to convert the water directly into H2 fuel gas that could be applied in houses and factories, or even in advanced technology such as spacecraft and airplane F-35s by providing H2 gas as a renewable energy source

    Morphological imperfections of epitaxial graphene: from a hindrance to the generation of new photo-responses in the visible domain

    No full text
    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Supplementary data for this article is available in the Loughborough Data Repository at doi:10.17028/rd.lboro.4986233.We report the discovery of remarkable photo-physical phenomena with characteristics unique to epitaxial graphene grown on 6H-SiC (000-1). Surprisingly, the graphene electrical resistance increases under light illumination in contrast to conventional materials where it normally decreases. The resistance shows logarithmic temperature dependences which may be attributed to an Altshuler-Aronov effect. We show that the photoresistance depends on the frequency of the irradiating light, with three lasers (red, green, and violet) used to demonstrate the phenomenon. The counterintuitive rise of the positive photoresistance may be attributed to a creation of trapped charges upon irradiation. We argue that the origin of the photoresistance is related to the texture formed by graphene flakes. The photovoltage also exists and increases with light intensity. However, its value saturates quickly with irradiation and does not change in time. The saturation of the photovoltage may be associated with the formation of a quasi-equilibrium state of the excited electrons and holes associated with a charge redistribution between the graphene and SiC substrate. The obtained physical picture is in agreement with the photoresistance measurements: X-Ray photoelectron spectrometry "XPS", atomic force microscopy "AFM", Raman spectroscopy and the magnetic dependence of photo resistance decay measurements. We also observed non-decaying photoresistance and linear magnetoresistance in magnetic fields up to 1 T. We argue that this is due to topological phases, spontaneously induced by persistent current formation within graphene flake edges by magnetic fields

    Raman spectroscopy imaging of exceptional electronic properties in epitaxial graphene grown on SiC

    No full text
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Graphene distinctive electronic and optical properties have sparked intense interest throughout the scientific community bringing innovation and progress to many sectors of academia and industry. Graphene manufacturing has rapidly evolved since its discovery in 2004. The diverse growth methods of graphene have many comparative advantages in terms of size, shape, quality and cost. Specifically, epitaxial graphene is thermally grown on a silicon carbide (SiC) substrate. This type of graphene is unique due to its coexistence with the SiC underneath which makes the process of transferring graphene layers for devices manufacturing simple and robust. Raman analysis is a sensitive technique extensively used to explore nanocarbon material properties. Indeed, this method has been widely used in graphene studies in fundamental research and application fields. We review the principal Raman scattering processes in SiC substrate and demonstrate epitaxial graphene growth. We have identified the Raman bands signature of graphene for different layers number. The method could be readily adopted to characterize structural and exceptional electrical properties for various epitaxial graphene systems. Particularly, the variation of the charge carrier concentration in epitaxial graphene of different shapes and layers number have been precisely imaged. By comparing the intensity ratio of 2D line and G line—“I2D/IG”—the density of charge across the graphene layers could be monitored. The obtained results were compared to previous electrical measurements. The substrate longitudinal optical phonon coupling “LOOPC” modes have also been examined for several epitaxial graphene layers. The LOOPC of the SiC substrate shows a precise map of the density of charge in epitaxial graphene systems for different graphene layers number. Correlations between the density of charge and particular graphene layer shape such as bubbles have been determined. All experimental probes show a high degree of consistency and efficiency. Our combined studies have revealed novel capacitor effect in diverse epitaxial graphene system. The SiC substrate self-compensates the graphene layer charge without any external doping. We have observed a new density of charge at the graphene—substrate interface. The located capacitor effects at epitaxial graphene-substrate interfaces give rise to an unexpected mini gap in graphene band structure

    Removal of Ni(II) Ions by Poly(Vinyl Alcohol)/Al<sub>2</sub>O<sub>3</sub> Nanocomposite Film via Laser Ablation in Liquid

    No full text
    Al2O3-poly(vinyl alcohol) nanocomposite (Al2O3-PVA nanocomposite) was generated in a single step using an eco-friendly method based on the pulsed laser ablation approach immersed in PVA solution to be applicable for the removal of Ni(II) from aqueous solution, followed by making a physicochemical characterization by SEM, XRD, FT-IR, and EDX. After that, the effect of adsorption parameters, such as pH, contact time, initial concentration of Ni(II), and medium temperature, were investigated for removal Ni(II) ions. The results showed that the adsorption was increased when pH was 5.3, and the process was initially relatively quick, with maximum adsorption detected within 90 min of contact time with the endothermic sorption process. Moreover, the pseudo-second-order rate kinetics (k2 = 9.9 × 10−4 g mg−1 min−1) exhibited greater agreement than that of the pseudo-first-order. For that, the Ni(II) was effectively collected by Al2O3-PVA nanocomposite prepared by an eco-friendly and simple method for the production of clean water to protect public health

    Impact of Rolled Graphene Oxide Grown on Polyaniline for Photodetection: Future Challenging Opto-Device

    No full text
    Rolled graphene oxide (roll-GO) with anew morphological properties than normal graphene is synthesized using modified Hummer. Then, the roll-GO/PANI composite is prepared through the adsorption of roll-GO on the surface of the PANI film, that performed through the oxidative polymerization method. The developed composite displays a small bandgap of 1.9 eV and shows a high optical property extends through a wide optical region from UV to IR regions. The chemical structure and function groups are confirmed using the XRD and FTIR. The roll-GO/PANI composite was investigated as a photodetector. The effects of different irradiation light conditions and the monochromatic wavelengths were tested through the measurements of the produced current density, Jph. The optical photon response exhibited excellent light sensitivity of the photodetector. The Jph enhanced highly under light (0.34 mA·cm−2) compared to dark conditions (0.007 mA·cm−2). Jph reached 0.24, 0.23, 0.14, and 0.09 mA·cm−2 under 340, 440, 540, and 730 nm, respectively. The photodetector detectivity (D) and photoresponsivity (R) are found to equal 0.45 × 109 Jones and 2.25 mA·W−1, respectively
    corecore