7 research outputs found

    Predicting Deep Hypnotic State From Sleep Brain Rhythms Using Deep Learning:A Data-Repurposing Approach

    Get PDF
    BACKGROUND: Brain monitors tracking quantitative brain activities from electroencephalogram (EEG) to predict hypnotic levels have been proposed as a labor-saving alternative to behavioral assessments. Expensive clinical trials are required to validate any newly developed processed EEG monitor for every drug and combinations of drugs due to drug-specific EEG patterns. There is a need for an alternative, efficient, and economical method. METHODS: Using deep learning algorithms, we developed a novel data-repurposing framework to predict hypnotic levels from sleep brain rhythms. We used an online large sleep data set (5723 clinical EEGs) for training the deep learning algorithm and a clinical trial hypnotic data set (30 EEGs) for testing during dexmedetomidine infusion. Model performance was evaluated using accuracy and the area under the receiver operator characteristic curve (AUC). RESULTS: The deep learning model (a combination of a convolutional neural network and long short-term memory units) trained on sleep EEG predicted deep hypnotic level with an accuracy (95% confidence interval [CI]) = 81 (79.2-88.3)%, AUC (95% CI) = 0.89 (0.82-0.94) using dexmedetomidine as a prototype drug. We also demonstrate that EEG patterns during dexmedetomidine-induced deep hypnotic level are homologous to nonrapid eye movement stage 3 EEG sleep. CONCLUSIONS: We propose a novel method to develop hypnotic level monitors using large sleep EEG data, deep learning, and a data-repurposing approach, and for optimizing such a system for monitoring any given individual. We provide a novel data-repurposing framework to predict hypnosis levels using sleep EEG, eliminating the need for new clinical trials to develop hypnosis level monitors

    Frontal electroencephalogram based drug, sex, and age independent sedation level prediction using non-linear machine learning algorithms

    Get PDF
    Brain monitors which track quantitative electroencephalogram (EEG) signatures to monitor sedation levels are drug and patient specific. There is a need for robust sedation level monitoring systems to accurately track sedation levels across all drug classes, sex and age groups. Forty-four quantitative features estimated from a pooled dataset of 204 EEG recordings from 66 healthy adult volunteers who received either propofol, dexmedetomidine, or sevoflurane (all with and without remifentanil) were used in a machine learning based automated system to estimate the depth of sedation. Model training and evaluation were performed using leave-one-out cross validation methodology. We trained four machine learning models to predict sedation levels and evaluated the influence of remifentanil, age, and sex on the prediction performance. The area under the receiver-operator characteristic curve (AUC) was used to assess the performance of the prediction model. The ensemble tree with bagging outperformed other machine learning models and predicted sedation levels with an AUC = 0.88 (0.81-0.90). There were significant differences in the prediction probability of the automated systems when trained and tested across different age groups and sex. The performance of the EEG based sedation level prediction system is drug, sex, and age specific. Nonlinear machine-learning models using quantitative EEG features can accurately predict sedation levels. The results obtained in this study may provide a useful reference for developing next generation EEG based sedation level prediction systems using advanced machine learning algorithms

    Machine Learning based Early Prediction of End-stage Renal Disease in Patients with Diabetic Kidney Disease using Clinical Trials Data

    Get PDF
    AimTo predict end‐stage renal disease (ESRD) in patients with type 2 diabetes by using machine‐learning models with multiple baseline demographic and clinical characteristics.Materials and methodsIn total, 11 789 patients with type 2 diabetes and nephropathy from three clinical trials, RENAAL (n = 1513), IDNT (n = 1715) and ALTITUDE (n = 8561), were used in this study. Eighteen baseline demographic and clinical characteristics were used as predictors to train machine‐learning models to predict ESRD (doubling of serum creatinine and/or ESRD). We used the area under the receiver operator curve (AUC) to assess the prediction performance of models and compared this with traditional Cox proportional hazard regression and kidney failure risk equation models.ResultsThe feed forward neural network model predicted ESRD with an AUC of 0.82 (0.76‐0.87), 0.81 (0.75‐0.86) and 0.84 (0.79‐0.90) in the RENAAL, IDNT and ALTITUDE trials, respectively. The feed forward neural network model selected urinary albumin to creatinine ratio, serum albumin, uric acid and serum creatinine as important predictors and obtained a state‐of‐the‐art performance for predicting long‐term ESRD.ConclusionsDespite large inter‐patient variability, non‐linear machine‐learning models can be used to predict long‐term ESRD in patients with type 2 diabetes and nephropathy using baseline demographic and clinical characteristics. The proposed method has the potential to create accurate and multiple outcome prediction automated models to identify high‐risk patients who could benefit from therapy in clinical practice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163629/2/dom14178.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163629/1/dom14178_am.pd

    Frontal electroencephalogram based drug, sex, and age independent sedation level prediction using non-linear machine learning algorithms

    No full text
    Brain monitors which track quantitative electroencephalogram (EEG) signatures to monitor sedation levels are drug and patient specific. There is a need for robust sedation level monitoring systems to accurately track sedation levels across all drug classes, sex and age groups. Forty-four quantitative features estimated from a pooled dataset of 204 EEG recordings from 66 healthy adult volunteers who received either propofol, dexmedetomidine, or sevoflurane (all with and without remifentanil) were used in a machine learning based automated system to estimate the depth of sedation. Model training and evaluation were performed using leave-one-out cross validation methodology. We trained four machine learning models to predict sedation levels and evaluated the influence of remifentanil, age, and sex on the prediction performance. The area under the receiver-operator characteristic curve (AUC) was used to assess the performance of the prediction model. The ensemble tree with bagging outperformed other machine learning models and predicted sedation levels with an AUC = 0.88 (0.81-0.90). There were significant differences in the prediction probability of the automated systems when trained and tested across different age groups and sex. The performance of the EEG based sedation level prediction system is drug, sex, and age specific. Nonlinear machine-learning models using quantitative EEG features can accurately predict sedation levels. The results obtained in this study may provide a useful reference for developing next generation EEG based sedation level prediction systems using advanced machine learning algorithms
    corecore