21 research outputs found

    Pull-out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios

    Get PDF
    This paper presents the fibre-matrix interfacial properties of hooked end steel fibres embedded in ultra-high performance mortars with various water/binder (W/B) ratios. The principle objective was to improve bond behaviour in terms of bond strength by reducing the (W/B) ratio to a minimum. Results show that a decrease in W/B ratio has a significant effect on the bondslip behaviour of both types of 3D fibres, especially when the W/B ratio was reduced from 0.25 to 0.15. Furthermore, the optimization in maximizing pullout load and total pullout work is found to be more prominent for the 3D fibres with a larger diameter than for fibres with a smaller diameter. On the contrary, increasing the embedded length of the 3D fibres did not result in an improvement on the maximum pullout load, but increase in the total pullout work

    Lightweight building blocks incorporating bottom ash aggregate under different curing conditions

    No full text
    In this study, the utilization of bottom ash as an aggregate in the production of lightweight building blocks was investigated. Pumice aggregate which was used in lightweight control mixture replaced by the bottom ash aggregate and on the other hand, cement replaced by high volume fly ash. Physical and mechanical properties of mixtures were determined after different curing regimes (standard water, in air, in oven, steam and autoclave curing) and in addition, water resistance of the mixtures was also determined. After that, microstructure of the specimens was investigated by using the scanning electron microscopy. Then, the thermal conductivity of the mixtures containing pumice and bottom ash was compared. Finally, in order to produce construction elements, prototypes of lightweight building blocks were manufactured. After these very procedures, it concludes that bottom ash is a good alternative for pumice aggregate in producing lightweight building blocks
    corecore