3,553 research outputs found

    Hydrologic homogeneous regions using monthly Streamflow in Turkey

    Get PDF
    Cluster analysis of gauged streamflow records into homogeneous and robust regions is an important tool for the characterization of hydrologic systems. In this paper we applied the hierarchical cluster analysis to the task of objectively classifying streamflow data into regions encompassing similar streamflow patterns over Turkey. The performance of three standardization techniques was also tested, and standardizing by range was found better than standardizing with zero mean and unit variance. Clustering was carried out using Ward’s minimum variance method which became prominent in managing water resources with squared Euclidean dissimilarity measures on 80 streamflow stations. The stations have natural flow regimes where no intensive river regulation had occurred. A general conclusion drawn is that the zones having similar streamflow pattern were not be overlapped well with the conventional climate zones of Turkey; however, they are coherent with the climate zones of Turkey recently redefined by the cluster analysis to total precipitation data as well as homogenous streamflow zones of Turkey determined by the rotated principal component analysis. The regional streamflow information in this study can significantly improve the accuracy of flow predictions in ungauged watersheds

    Numerical study of oxygen diffusion from capillary to tissues during hypoxia with external force effects

    Get PDF
    A mathematical model to simulate oxygen delivery through a capillary to tissues under the influence of an external force field is presented. The multi-term general fractional diffusion equation containing force terms and a time dependent absorbent term is taken into account. Fractional calculus is applied to describe the phenomenon of sub-diffusion of oxygen in both transverse and longitudinal directions. A new computational algorithm, i.e., the new iterative method (NIM) is employed to solve the spatio-temporal fractional partial differential equation subject to appropriate physical boundary conditions. Validation of NIM solutions is achieved with a modified Adomian decomposition method (MADM). A parametric study is conducted for three loading scenarios on the capillary-radial force alone, axial force alone and the combined case of both forces. The results demonstrate that the force terms markedly influence the oxygen diffusion process. For example, the radial force exerts a more profound effect than axial force on sub-diffusion of oxygen indicating that careful manipulation of these forces on capillary tissues may assist in the effective reduction of hypoxia or other oxygen depletion phenomena

    Electrothermal transport in biological systems : an analytical approach for electrokinetically-modulated peristaltic flow

    Get PDF
    A mathematical model is developed to investigate the combined viscous electro-osmotic flow and heat transfer in a finite length micro-channel with peristaltic wavy walls. The influence of Joule heating is included. The unsteady two-dimensional conservation equations for mass, momentum and energy conservation with viscous dissipation, heat absorption and electro-kinetic body force, are formulated in a Cartesian co-ordinate system. The Joule heating term appears as a quadratic function of axial electrical field in the energy conservation equation. The axial momentum and energy equations are coupled via the thermal buoyancy term. The peristaltic waves propagating along the micro-channel walls are simulated via a time-dependent co-sinusoidal wave function for the transverse vibration of the walls. Both single and train wave propagations are considered. Constant thermo-physical properties are prescribed and a Newtonian viscous model is employed for the fluid. The electrical field terms are rendered into electrical potential terms via the Poisson-Boltzmann equation, Debye length approximation and ionic Nernst Planck equation. The dimensionless emerging linearized electro-thermal boundary value problem is solved using integral methods. A parametric study is conducted to evaluate the impact of isothermal Joule heating term on axial velocity, temperature distribution, pressure difference, volumetric flow rate, skin friction and Nusselt number. The modification in streamline distributions with Joule heating and electro-osmotic velocity is also addressed to elucidate trapping bolus dynamics

    Peristaltic Transport of a Couple Stress Fluid: Some Applications to Hemodynamics

    Full text link
    The present paper deals with a theoretical investigation of the peristaltic transport of a couple stress fluid in a porous channel. The study is motivated towards the physiological flow of blood in the micro-circulatory system, by taking account of the particle size effect. The velocity, pressure gradient, stream function and frictional force of blood are investigated, when the Reynolds number is small and the wavelength is large, by using appropriate analytical and numerical methods. Effects of different physical parameters reflecting porosity, Darcy number, couple stress parameter as well as amplitude ratio on velocity profiles, pumping action and frictional force, streamlines pattern and trapping of blood are studied with particular emphasis. The computational results are presented in graphical form. The results are found to be in good agreement with those of Shapiro et. al \cite{r25} that was carried out for a non-porous channel in the absence of couple stress effect. The present study puts forward an important observation that for peristaltic transport of a couple stress fluid during free pumping when the couple stress effect of the fluid/Darcy permeability of the medium, flow reversal can be controlled to a considerable extent. Also by reducing the permeability it is possible to avoid the occurrence of trapping phenomenon
    corecore