491 research outputs found

    Schwarzschild-de Sitter Spacetimes, McVittie Coordinates, and Trumpet Geometries

    Full text link
    Trumpet geometries play an important role in numerical simulations of black hole spacetimes, which are usually performed under the assumption of asymptotic flatness. Our Universe is not asymptotically flat, however, which has motivated numerical studies of black holes in asymptotically de Sitter spacetimes. We derive analytical expressions for trumpet geometries in Schwarzschild-de Sitter spacetimes by first generalizing the static maximal trumpet slicing of the Schwarzschild spacetime to static constant mean curvature trumpet slicings of Schwarzschild-de Sitter spacetimes. We then switch to a comoving isotropic radial coordinate which results in a coordinate system analogous to McVittie coordinates. At large distances from the black hole the resulting metric asymptotes to a Friedmann-Lemaitre-Robertson-Walker metric with an exponentially-expanding scale factor. While McVittie coordinates have another asymptotically de Sitter end as the radial coordinate goes to zero, so that they generalize the notion of a "wormhole" geometry, our new coordinates approach a horizon-penetrating trumpet geometry in the same limit. Our analytical expressions clarify the role of time-dependence, boundary conditions and coordinate conditions for trumpet slices in a cosmological context, and provide a useful test for black hole simulations in asymptotically de Sitter spacetimes.Comment: 7 pages, 3 figures, added referenc

    Prompt merger collapse and the maximum mass of neutron stars

    Full text link
    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent, nuclear equations of state, and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a non-rotating star in isolation by between 30 and 70 per cent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the non-rotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Trumpet Slices in Kerr Spacetimes

    Full text link
    We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime representing rotating black holes. We also propose a (2+1)+1 formalism for the characterization of trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black holes in the presence of a cosmological constant. We present results for metric functions in this slicing and analyze the geometry of the rotating trumpet surface.Comment: 5 pages, 2 figures; version published in PR

    Approximate initial data for binary black holes

    Get PDF
    We construct approximate analytical solutions to the constraint equations of general relativity for binary black holes of arbitrary mass ratio in quasicircular orbit. We adopt the puncture method to solve the constraint equations in the transverse-traceless decomposition and consider perturbations of Schwarzschild black holes caused by boosts and the presence of a binary companion. A superposition of these two perturbations then yields approximate, but fully analytic binary black hole initial data that are accurate to first order in the inverse of the binary separation and the square of the black holes' momenta.Comment: 13 pages, 4 figures, added comparison to numerical calculations, accepted to PR

    Gravitational Wavetrains in the Quasi-Equilibrium Approximation: A Model Problem in Scalar Gravitation

    Full text link
    A quasi-equilibrium (QE) computational scheme was recently developed in general relativity to calculate the complete gravitational wavetrain emitted during the inspiral phase of compact binaries. The QE method exploits the fact that the the gravitational radiation inspiral timescale is much longer than the orbital period everywhere outside the ISCO. Here we demonstrate the validity and advantages of the QE scheme by solving a model problem in relativistic scalar gravitation theory. By adopting scalar gravitation, we are able to numerically track without approximation the damping of a simple, quasi-periodic radiating system (an oscillating spherical matter shell) to final equilibrium, and then use the exact numerical results to calibrate the QE approximation method. In particular, we calculate the emitted gravitational wavetrain three different ways: by integrating the exact coupled dynamical field and matter equations, by using the scalar-wave monopole approximation formula (corresponding to the quadrupole formula in general relativity), and by adopting the QE scheme. We find that the monopole formula works well for weak field cases, but fails when the fields become even moderately strong. By contrast, the QE scheme remains quite reliable for moderately strong fields, and begins to breakdown only for ultra-strong fields. The QE scheme thus provides a promising technique to construct the complete wavetrain from binary inspiral outside the ISCO, where the gravitational fields are strong, but where the computational resources required to follow the system for more than a few orbits by direct numerical integration of the exact equations are prohibitive.Comment: 15 pages, 14 figure

    Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test

    Get PDF
    We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').Comment: 4 postscript figures. Submitted to Phys. Rev. D15 as a Brief Repor

    Analytical Tendex and Vortex Fields for Perturbative Black Hole Initial Data

    Full text link
    Tendex and vortex fields, defined by the eigenvectors and eigenvalues of the electric and magnetic parts of the Weyl curvature tensor, form the basis of a recently developed approach to visualizing spacetime curvature. In particular, this method has been proposed as a tool for interpreting results from numerical binary black hole simulations, providing a deeper insight into the physical processes governing the merger of black holes and the emission of gravitational radiation. Here we apply this approach to approximate but analytical initial data for both single boosted and binary black holes. These perturbative data become exact in the limit of small boost or large binary separation. We hope that these calculations will provide additional insight into the properties of tendex and vortex fields, and will form a useful test for future numerical calculations.Comment: 18 pages, 8 figures, submitted to PR

    Computing the Complete Gravitational Wavetrain from Relativistic Binary Inspiral

    Get PDF
    We present a new method for generating the nonlinear gravitational wavetrain from the late inspiral (pre-coalescence) phase of a binary neutron star system by means of a numerical evolution calculation in full general relativity. In a prototype calculation, we produce 214 wave cycles from corotating polytropes, representing the final part of the inspiral phase prior to reaching the ISCO. Our method is based on the inequality that the orbital decay timescale due to gravitational radiation is much longer than an orbital period and the approximation that gravitational radiation has little effect on the structure of the stars. We employ quasi-equilibrium sequences of binaries in circular orbit for the matter source in our field evolution code. We compute the gravity-wave energy flux, and, from this, the inspiral rate, at a discrete set of binary separations. From these data, we construct the gravitational waveform as a continuous wavetrain. Finally, we discuss the limitations of our current calculation, planned improvements, and potential applications of our method to other inspiral scenarios.Comment: 4 pages, 4 figure

    Trumpet slices of the Schwarzschild-Tangherlini spacetime

    Full text link
    We study families of time-independent maximal and 1+log foliations of the Schwarzschild-Tangherlini spacetime, the spherically-symmetric vacuum black hole solution in D spacetime dimensions, for D >= 4. We identify special members of these families for which the spatial slices display a trumpet geometry. Using a generalization of the 1+log slicing condition that is parametrized by a constant n we recover the results of Nakao, Abe, Yoshino and Shibata in the limit of maximal slicing. We also construct a numerical code that evolves the BSSN equations for D=5 in spherical symmetry using moving-puncture coordinates, and demonstrate that these simulations settle down to the trumpet solutions.Comment: 11 pages, 6 figures, submitted to PR
    • …
    corecore