165 research outputs found

    A Transient New Coherent Condition of Matter: The Signal for New Physics in Hadronic Diffractive Scattering

    Full text link
    We demonstrate the existence of an anomalous structure in the data on the diffractive elastic scattering of hadrons at high energies and small momentum transfer. We analyze five sets of experimental data on p(p‾)−pp(\overline{p})-p scattering from five different experiments with colliding beams, ranging from the first-- and second--generation experiments at s=53\sqrt{s} = 53 GeV to the most recent experiments at 546 GeV and at 1800 GeV. All of the data sets exhibit a localized anomalous structure in momentum transfer. We represent the anomalous behavior by a phenomenological formula. This is based upon the idea that a transient coherent condition of matter occurs in some of the intermediate inelastic states which give rise, via unitarity, to diffractive elastic scattering. The Fourier--Bessel transform into momentum--transfer space of a spatial oscillatory behavior of matter in the impact--parameter plane results in a small piece of the diffractive amplitude which exhibits a localized anomalous behavior near a definite value of −t-t . In addition, we emphasize possible signals coming directly from such a new condition of matter that may be present in current experiments on inelastic processes.Comment: 25 pages, LaTeX (12 figures, not included). A complete postscript file (except figures 1 and 11, which are available upon request) is available via anonymous ftp at ttpux2.physik.uni-karlsruhe.de (129.13.102.139) as /ttp94-03 /ttp94-03.ps, Local preprint# TTP94-03 (March 1994

    Event-by-event fluctuations in collective quantities

    Get PDF
    We discuss an event-by-event fluctuation analysis of particle production in heavy ion collisions. We compare different approaches to the evaluation of the event-by-event dynamical fluctuations in quantities defined on groups of particles, such quantities as mean transverse momentum, transverse momentum spectra slope, strength of anisotropic flow, etc.. The direct computation of the dynamical fluctuations and the sub-event method are discussed in more detail. We also show how the fluctuation in different variables can be related to each other.Comment: LaTex, 14 pages and 5 figures. 2 references adde

    Dark energy in hybrid inflation

    Full text link
    The situation that a scalar field provides the source of the accelerated expansion of the universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid inflation. We trigger the onset of the motion of the quintessence field via the transition field, and find that the fate of the universe depends on the true vacuum energy determined by choosing the parameters. We also briefly discuss the variation of the equation of state and the possible implementation of our scenario in supersymmetric theories.Comment: (v1) 10 pages, 1 figure; (v2) 12 pages, considerably revised, to appear in Physical Review

    Background Thermal Contributions in Testing the Unruh Effect

    Full text link
    We consider inertial and accelerated Unruh-DeWitt detectors moving in a background thermal bath and calculate their excitation rates. It is shown that for fast moving detectors such a thermal bath does not affect substantially the excitation probability. Our results are discussed in connection with a possible proposal of testing the Unruh effect in high energy particle accelerators.Comment: 13 pages, (REVTEX 3.0), 3 figures available upon reques

    Multiparticle production in the model with antishadowing

    Get PDF
    We discuss the role of absorbtion and antishadowing in particle production. We reproduce power-like energy behavior of the mean multiplicity in the model with antishadowing and discuss physical implications of such behavior for the hadron structure.Comment: 11 pages, 3 figures, extended version of the talk at the XXXII International Symposium on Multiparticle Dynamics September 7-13, 2002 Alushta, Crimea, Ukrain

    Superposition effect and clan structure in forward-backward multiplicity correlations

    Get PDF
    The main purpose of this paper is to discuss the link between forward-backward multiplicity correlations properties and the shape of the corresponding final charged particle multiplicity distribution in various classes of events in different collisions. It is shown that the same mechanism which explains the shoulder effect and the H_n vs. n oscillations in charged particle multiplicity distributions, i.e., the weighted superposition of different classes of events with negative binomial properties, reproduces within experimental errors also the forward-backward multiplicity correlation strength in e+e- annihilation at LEP energy and allows interesting predictions for pp collisions in the TeV energy region, to be tested at LHC, for instance with the ALICE detector. We limit ourselves at present to study substructures properties in hadron-hadron collisions and e+e- annihilation; they are examined as ancillary examples in the conviction that their understanding might be relevant also in other more complex cases.Comment: 16 page

    Scaling violations: Connections between elastic and inelastic hadron scattering in a geometrical approach

    Get PDF
    Starting from a short range expansion of the inelastic overlap function, capable of describing quite well the elastic pp and pˉp\bar{p}p scattering data, we obtain extensions to the inelastic channel, through unitarity and an impact parameter approach. Based on geometrical arguments we infer some characteristics of the elementary hadronic process and this allows an excellent description of the inclusive multiplicity distributions in pppp and pˉp\bar{p}p collisions. With this approach we quantitatively correlate the violations of both geometrical and KNO scaling in an analytical way. The physical picture from both channels is that the geometrical evolution of the hadronic constituents is principally reponsible for the energy dependence of the physical quantities rather than the dynamical (elementary) interaction itself.Comment: 16 pages, aps-revtex, 11 figure

    Inelastic Final-State Interactions and Two-body Hadronic B decays into Single-Isospin channels

    Get PDF
    The role of inelastic final-state interactions in CP asymmetries and branching ratios is investigated in certain chosen single isospin two-body hadronic B decays. Treating final-state interactions through Pomeron and Regge exchanges, we demonstrate that inelastic final state interactions could lead to sizeable effects on the CP asymmetry.Comment: 23 pages, Latex, 1 eps-figur

    Charmless B→PPB \to PP decays using flavor SU(3) symmetry

    Full text link
    The decays of BB mesons to a pair of charmless pseudoscalar (PP) mesons are analyzed within a framework of flavor SU(3). Symmetry breaking is taken into account in tree (TT) amplitudes through ratios of decay constants; exact SU(3) is assumed elsewhere. Acceptable fits to B→ππB \to \pi \pi and B→KπB \to K \pi branching ratios and CP asymmetries are obtained with tree, color-suppressed (CC), penguin (PP), and electroweak penguin (PEWP_{EW}) amplitudes. Crucial additional terms for describing processes involving η\eta and η′\eta' include a large flavor-singlet penguin amplitude (SS) as proposed earlier and a penguin amplitude PtuP_{tu} associated with intermediate tt and uu quarks. For the B+→π+η′B^+ \to \pi^+ \eta' mode a term StuS_{tu} associated with intermediate tt and uu quarks also may be needed. Values of the weak phase γ\gamma are obtained consistent with an earlier analysis of B→VPB \to VP decays, where VV denotes a vector meson, and with other analyses of CKM parameters.Comment: 26 pages, 1 figure. To be submitted to Phys. Rev. D. Reference update

    Consistency of data on soft photon production in hadronic interactions

    Full text link
    The glob model of Lichard and Van Hove and the modified soft annihilation model (MSAM) of Lichard and Thompson are used as a phenomenological tool for relating results from various experiments on soft photon production in high energy collisions. The total phenomenological expectation is composed of contributions from classical bremsstrahlung, the soft annihilation model and the glob model. The empirical excess above the background from hadronic decays at very small longitudinal momenta of photons is well reproduced, as well as that for transverse momenta pT >~ 10 MeV/c. Some data do not require the glob model and MSAM components in the phenomenological mixture, but do not exclude them. On the basis of consistency of all data with the total theoretical expectation we argue that the results of all experiments are mutually consistent. The models are unable to describe the excess of ultrasoft photons (pT <~ 10 MeV/c), seen by some, but not all, experiments. This may indicate an as yet unknown projectile-mass-dependent production mechanism. Possible relations of soft photon production to other phenomena are discussed. A simple-to-use, but physically equivalent version of the glob model is developed, which enables an easy check of presented results.Comment: 25 pages, RevTeX, epsf.sty, 12 embedded figure
    • …
    corecore