49 research outputs found

    Hermann Hesse\u27s \u3cem\u3eSiddhartha \u3c/em\u3e as Divine Comedy

    Get PDF
    Comedy has always been more difficult to define and pin down than tragedy. Part of the difficulty may be that comedy is, by its very nature, more protean than tragedy: Comedy often takes delight in breaking the rules. Moreover, tragedy has been so memorably described in The Poetics that Aristotle may have unintentionally molded the shape of tragedy through the ages. There are different kinds of tragedy, to be sure, but they are usually variations of a similar theme and form. Perhaps because Aristotle\u27s treatise on comedy has been lost, comedy was left free to develop in numerous ways. In any event, comedy can range from the slapstick to the sublime, from the misadventures of Don Quixote to the mysticism of Dante

    Last level cache size heterogeneity in embedded systems

    Get PDF
    In typical multicore processors, Last Level Caches (LLC) are formed by distributed clusters of memory banks of the same size, namely homogeneous ones. By shutting down part of these clusters to save power along generations of multicore processors, clusters with non homogeneous cache sizes can be originated, named as heterogeneous ones. Given that heterogeneous clusters have typically smaller sizes than homogeneous ones, they present larger miss rates that are likely to deteriorate performance. In this investigation, we study the impact of heterogeneous caches in embedded microprocessors, by having an arbitrary mix of homogeneous and heterogeneous clusters. That is, we propose to evaluate the architectural implications of these heterogeneous caches and a flexible algorithm that can be used to explore them. From scientific applications’ experimental benchmarking, our findings show that microprocessors with heterogeneous clusters present a maximal performance degradation of about 10% and maximal performance improvement of 16%, while obtaining maximum miss hit rate of reduction and improvement up to 10%. In addition, 10% of coherence activity decrease when presenting maximum energy utilization up to 50% and maximum energy reduction of 15%

    Way Adaptable D-Nuca Cache

    No full text
    Poster in ACACES 2006 - ACADEMIA PRESS - ISSN 903820981

    NUMA Caches

    No full text

    Analysis of Static and Dynamic Energy Consumptions in NUCA Caches: Initial Results

    No full text
    ABSTRACT NUCA caches are large L2 on-chip cache memories characterized by multi-bank partitioning and designed to hide wire delay effects. They exhibit high hit rates while keeping access latency low. Proposed designs for such caches are Static NUCA, in which data are statically allocated to the cache banks, and Dynamic NUCA, in which data may reside in different banks, and a migration mechanism is introduced to better tolerate wire delay effects. The two architectures permit to achieve different performances by acting on architectural parameters and data management policies, at the cost of different balances between static and dynamic power consumption and energy dissipation. In this work, we propose preliminary results of the characterization of such balances, by presenting an evaluation of performance and energy consumption of conventional UCAs, and Static and Dynamic NUCA caches. All the considered caches architectures are equal sized and they are supposed to be used in an aggressive high frequency system running some applications from the SPEC CPU2000 and the NAS Parallel Benchmarks suites. The experimental results obtained indicate that, although the migration of data contributes to increase the dynamic energy consumption in Dynamic NUCA caches, the higher IPC achieved permits to save static energy, which dominates the power/energy balance in all the considered architectures. As a consequence, such results would designate NUCA caches as the most performing and energy saving architectures. Besides, according to the obtained results, future power improvements for NUCA caches should concentrate on static energy, while, for the dynamic energy, the on-chip network is the most critical element. Migration of data is acceptable, since it has a positive impact on performance, and the increased dynamic energy is overwhelmed by the static energy savings resulting from the shorter execution time. In order to give a general validity to such statements, we need to explore more design space points for each architecture (by varying the running clock rate and other design parameters) and to evaluate them considering a larger set of benchmark

    A real-time configurable NURBS interpolator with bounded acceleration, jerk and chord error

    No full text
    Advances in manufacturing technologies and in machine tools allow for unprecedented quality and efficiency in production lines, but also ask for new and increasing requirements on the motion planning and control systems. The increase of CPU processing power has permitted, in traditional CNC systems, the introduction of NURBS interpolation capabilities, thus determining a further increase in machining quality and efficiency. This has posed new and still unsolved issues, such as the need to satisfy multiple opposite constraints like limiting chord error, acceleration and jerk and offering real-time guarantees. In addition, the ability of privileging the production throughput by relaxing one or more of the previous constraints in a simple way, has emerged as another requirement of modern manufacturing plants. Nevertheless, none of the existing NURBS interpolators have these characteristics. In this work, we propose a NURBS interpolator that is able to satisfy all the manufacturing technology requirements and is able to respect, thanks to its bounded computational complexity, the position control real-time constraints. Such an interpolator is easily reconfigurable, i.e., it can relax some of the constraints while maintaining performances better than previously proposed solutions, and can be adapted in order to include constraints that were not originally considered. Performances of the proposed algorithm have been evaluated both by simulations and by real milling experiments
    corecore