24 research outputs found

    Where is the pi particle?

    Full text link
    We discuss the interplay of particle-particle and particle-hole spin-triplet channels in high-T_c superconductors using a quasiparticle dispersion motivated by angle-resolved photoemission. Within a generalized RPA, we find a well defined antibound state of two holes, the pi resonance of Demler and Zhang, as well as a bound state of a particle and a hole, the spin exciton. We show that the energy of the pi resonance always exceeds 2 Delta, twice the maximum d-wave gap, therefore the neutron resonance observed in the cuprates around energy Delta is most likely a spin exciton. At the same time, we speculate that the pi particle can exist at higher energies and might be observed in neutron scattering around 100 meV.Comment: RevTeX, 5 pages, 4 eps figure

    From Cooper Pairs to Composite Bosons: A Generalized RPA Analysis of Collective Excitations

    Full text link
    The evolution of the ground state and the excitation spectrum of the two and three dimensional attractive Hubbard model is studied as the system evolves from a Cooper pair regime for weak attraction to a composite boson regime for a strong attraction.Comment: 20 pages RevTex, 7 figures on reques

    Collective Excitations in High-Temperature Superconductors

    Full text link
    Collective, low-energy excitations in quasi-two-dimensional d-wave superconductors are analyzed. While the long-range Coulomb interaction shifts the charge-density-wave and phase modes up to the plasma energy, the spin-density-wave excitation that arises due to a strong local electron-electron repulsion can propagate as a damped collective mode within the superconducting energy gap. It is suggested that these excitations are relevant to high-Tc superconductors, close to the antiferromagnetic phase boundary, and may explain some of the exotic features of the experimentally observed spectral-density and neutron-scattering data.Comment: 5 jolly page

    Plasmon excitations in homogeneous neutron star matter

    Full text link
    We study the possible collective plasma modes which can affect neutron-star thermodynamics and different elementary processes in the baryonic density range between nuclear saturation (ρ0\rho_0) and 3ρ03\rho_0. In this region, the expected constituents of neutron-star matter are mainly neutrons, protons, electrons and muons (npeμnpe\mu matter), under the constraint of beta equilibrium. The elementary plasma excitations of the peμpe\mu three-fluid medium are studied in the RPA framework. We emphasize the relevance of the Coulomb interaction among the three species, in particular the interplay of the electron and muon screening in suppressing the possible proton plasma mode, which is converted into a sound-like mode. The Coulomb interaction alone is able to produce a variety of excitation branches and the full spectral function shows a rich structure at different energy. The genuine plasmon mode is pushed at high energy and it contains mainly an electron component with a substantial muon component, which increases with density. The plasmon is undamped for not too large momentum and is expected to be hardly affected by the nuclear interaction. All the other branches, which fall below the plasmon, are damped or over-damped.Comment: misprint corrected in Eq. (1

    Theory of Luminescence Spectra of High-Density Electron-Hole Systems: Crossover from Excitonic Bose-Einstein Condenstation to Electron-Hole BCS State

    Full text link
    We present a unified theory of luminescence spectra for highly excited semiconductors, which is applicable both to the electron-hole BCS state and to the exciton Bose-Einstein condensate. The crossover behavior between electron-hole BCS state and exciton Bose-Einstein condensate clearly manifests itself in the calculated luminescence spectra. The analysis is based on the Bethe-Salpeter equation combined with the generalized random-phase-approximation, which enables us to consider the multiple Coulomb scattering and the quantum fluctuation associated with the center-of-mass motion of electron-hole pairs. In the crossover regime, the calculated spectra are essentially different from results obtained by the BCS-like mean-field theory and the interacting Boson model. In particular, it is found that the broad spectrum, arising from the recombination of electron-hole BCS state, splits into the P- and P_2-luminescence bands with decreasing the particle density. The dependence of these bands on the carrier density is in good agreement with experiments for highly excited semiconductors.Comment: 9 pages, 4 figures, To appear in Solid State Communication

    Many-body theory of pump-probe spectra for highly excited semiconductors

    Full text link
    We present a unified theory for pump-probe spectra in highly excited semiconductors, which is applicable throughout the whole density regime including the high-density electron-hole BCS state and the low-density excitonic Bose-Einstein condensate (BEC). The analysis is based on the BCS-like pairing theory combined with the Bethe-Salpeter (BS) equation, which first enables us to incorporate the state-filling effect, the band-gap renormalization and the strong/weak electron-hole pair correlations in a unified manner. We show that the electron-hole BCS state is distinctly stabilized by the intense pump-light, and this result strongly suggests that the macroscopic quantum state can be observed under the strong photoexcitation. The calculated spectra considerably deviate from results given by the BCS-like mean field theory and the simple BS equation without electron-hole pair correlation especially in the intermediate density states between the electron-hole BCS state and the excitonic BEC state. In particular, we find the sharp stimulated emission and absorption lines which originate from the optical transition accompanied by the collective phase fluctuation mode in the electron-hole BCS state. From the pump-probe spectral viewpoint, we show that this fluctuation mode changes to the exciton mode with decreasing carrier densityComment: RevTeX 11 pages, 10 figures. To appear in Phys.Rev.B1

    Pi excitation of the t-J model

    Full text link
    In this paper, we present analytical and numerical calculations of the pi resonance in the t-J model. We show in detail how the pi resonance in the particle-particle channel couples to and appears in the dynamical spin correlation function in a superconducting state. The contribution of the pi resonance to the spin excitation spectrum can be estimated from general model-independent sum rules, and it agrees with our detailed calculations. The results are in overall agreement with the exact diagonalization studies of the t-J model. Earlier calculations predicted the correct doping dependence of the neutron resonance peak in the YBCO superconductor, and in this paper detailed energy and momentum dependence of the spin correlation function is presented. The microscopic equations of motion obtained within current formalism agree with that of the SO(5) nonlinear sigma model, where the pi resonance is interpreted as a pseudo Goldstone mode of the spontaneous SO(5) symmetry breaking.Comment: 33 pages, LATEX, 14 eps fig

    Helical spin-density wave in doped V2O3

    Full text link
    Recent neutron scattering and nuclear magnetic resonance experiments have revealed that the low temperature phase of doped V_{2-y}O_3 is an itinerant antiferromagnet with a helical spin structure. We use a band structure calculation as the point of departure to show that these experiments are in agreement with mean field results for an Overhauser spin-density wave state. The influences of a finite life-time and of dilute magnetic impurities are discussed.Comment: 6 pages RevTex incl. 7 postscript figures, to be published by PR

    On the relative positions of the 2Δ2\Delta peaks in Raman and tunneling spectra of d-wave superconductors

    Full text link
    We study B1gB_{1g} Raman intensity R(Ω)R(\Omega) and the density of states N(ω)N(\omega) in isotropic 2D d-wave superconductors. For an ideal gas, R(Ω)R(\Omega) and N(ω)N(\omega) have sharp peaks at Ω=2Δ\Omega =2\Delta and ω=Δ\omega =\Delta, respectively, where Δ\Delta is the maximum value of the gap. We study how the peak positions are affected by the fermionic damping due to impurity scattering. We show that while the damping generally shifts the peak positions to larger frequencies, the peak in R(Ω)R(\Omega) still occurs at almost twice the peak position in N(ω)N(\omega) and therefore cannot account for the experimentally observed downturn shift of the peak frequency in R(Ω)R(\Omega) in underdoped cuprates compared to twice that in N(ω)N(\omega). We also discuss how the fermionic damping affects the dynamical spin susceptibility.Comment: 5 pages, 2 figure
    corecore