67 research outputs found

    Exposure of Phosphatidylserine on Leishmania amazonensis Isolates Is Associated with Diffuse Cutaneous Leishmaniasis and Parasite Infectivity

    Get PDF
    Diffuse cutaneous leishmaniasis (DCL) is a rare clinical manifestation of leishmaniasis, characterized by an inefficient parasite-specific cellular response and heavily parasitized macrophages. In Brazil, Leishmania (Leishmania) amazonensis is the main species involved in DCL cases. In the experimental model, recognition of phosphatidylserine (PS) molecules exposed on the surface of amastigotes forms of L. amazonensis inhibits the inflammatory response of infected macrophages as a strategy to evade the host immune surveillance. In this study, we examined whether PS exposure on L. amazonensis isolates from DCL patients operated as a parasite pathogenic factor and as a putative suppression mechanism of immune response during the infection. Peritoneal macrophages from F1 mice (BALB/c×C57BL/6) were infected with different L. amazonensis isolates from patients with localized cutaneous leishmaniasis (LCL) or DCL. DCL isolates showed higher PS exposure than their counterparts from LCL patients. In addition, PS exposure was positively correlated with clinical parameters of the human infection (number of lesions and time of disease) and with characteristics of the experimental infection (macrophage infection and anti-inflammatory cytokine induction). Furthermore, parasites isolated from DCL patients displayed an increased area in parasitophorous vacuoles (PV) when compared to those isolated from LCL patients. Thus, this study shows for the first time that a parasite factor (exposed PS) might be associated with parasite survival/persistence in macrophages and lesion exacerbation during the course of DCL, providing new insights regarding pathogenic mechanism in this rare chronic disease

    HIV-1 Promotes Intake of Leishmania Parasites by Enhancing Phosphatidylserine-Mediated, CD91/LRP-1-Dependent Phagocytosis in Human Macrophages

    Get PDF
    Over the past decade, the number of reported human immunodeficiency virus type-1 (HIV-1)/Leishmania co-infections has risen dramatically, particularly in regions where both diseases are endemic. Although it is known that HIV-1 infection leads to an increase in susceptibility to Leishmania infection and leishmaniasis relapse, little remains known on how HIV-1 contributes to Leishmania parasitaemia. Both pathogens infect human macrophages, and the intracellular growth of Leishmania is increased by HIV-1 in co-infected cultures. We now report that uninfected bystander cells, not macrophages productively infected with HIV-1, account for enhanced phagocytosis and higher multiplication of Leishmania parasites. This effect can be driven by HIV-1 Tat protein and transforming growth factor-beta (TGF-β). Furthermore, we show for the first time that HIV-1 infection increases surface expression of phosphatidylserine receptor CD91/LRP-1 on human macrophages, thereby leading to a Leishmania uptake by uninfected bystander cells in HIV-1-infected macrophage populations. The more important internalization of parasites is due to interactions between the scavenger receptor CD91/LRP-1 and phosphatidylserine residues exposed at the surface of Leishmania. We determined also that enhanced CD91/LRP-1 surface expression occurs rapidly following HIV-1 infection, and is triggered by the activation of extracellular TGF-β. Thus, these results establish an intricate link between HIV-1 infection, Tat, surface CD91/LRP-1, TGF-β, and enhanced Leishmania phosphatidylserine-mediated phagocytosis

    Cooperation between Apoptotic and Viable Metacyclics Enhances the Pathogenesis of Leishmaniasis

    Get PDF
    Mimicking mammalian apoptotic cells by exposing phosphatidylserine (PS) is a strategy used by virus and parasitic protozoa to escape host protective inflammatory responses. With Leishmania amazonensis (La), apoptotic mimicry is a prerogative of the intramacrophagic amastigote form of the parasite and is modulated by the host. Now we show that differently from what happens with amastigotes, promastigotes exposing PS are non-viable, non-infective cells, undergoing apoptotic death. As part of the normal metacyclogenic process occurring in axenic cultures and in the gut of sand fly vectors, a sub-population of metacyclic promastigotes exposes PS. Apoptotic death of the purified PS-positive (PSPOS) sub-population was confirmed by TUNEL staining and DNA laddering. Transmission electron microscopy revealed morphological alterations in PSPOS metacyclics such as DNA condensation, cytoplasm degradation and mitochondrion and kinetoplast destruction, both in in vitro cultures and in sand fly guts. TUNELPOS promastigotes were detected only in the anterior midgut to foregut boundary of infected sand flies. Interestingly, caspase inhibitors modulated parasite death and PS exposure, when added to parasite cultures in a specific time window. Efficient in vitro macrophage infections and in vivo lesions only occur when PSPOS and PS-negative (PSNEG) parasites were simultaneously added to the cell culture or inoculated in the mammalian host. The viable PSNEG promastigote was the infective form, as shown by following the fate of fluorescently labeled parasites, while the PSPOS apoptotic sub-population inhibited host macrophage inflammatory response. PS exposure and macrophage inhibition by a subpopulation of promastigotes is a different mechanism than the one previously described with amastigotes, where the entire population exposes PS. Both mechanisms co-exist and play a role in the transmission and development of the disease in case of infection by La. Since both processes confer selective advantages to the infective microorganism they justify the occurrence of apoptotic features in a unicellular pathogen
    • …
    corecore