20,904 research outputs found
The evaluation of the rolling moments induced by wraparound fins
A possible reason is suggested for the induced rolling moments occurring on wraparound-fin configurations in subsonic flight at zero angle of attack. The subsonic potential flow over the configuration at zero incidence is solved numerically. The body is simulated by a distribution of sources along its axis, and the fins are described by a vortex-lattice method. It is shown that rolling moments can be induced on the antisymmetric fins by the radial flow generated at the base of the configuration, either over the converging separated wake, or over the diverging plume of a rocket motor
Longitudinal flying qualities criteria for single-pilot instrument flight operations
Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria
Models and Phenomenology of Maximal Flavor Violation
We consider models of maximal flavor violation (MxFV), in which a new scalar
mediates large q_3 q_1 or q_3 q_2 flavor changing transitions (q_i is
an i'th generation quark), while q_3 q_3 transitions are suppressed, e.g.,
\xi_{31}, \xi_{13} ~ V_{tb} and \xi_{33} ~ V_{td}, where \xi_{ij} are the new
scalar couplings to quarks and V is the CKM matrix. We show that, contrary to
the conventional viewpoint, such models are not ruled out by the existing low
energy data on K^0, B^0 and D^0 oscillations and rare K and B-decays. We also
show that these models of MxFV can have surprising new signatures at the LHC
and the Tevatron.Comment: Latex, 4 pages, 1 figure. Version as publishe
Randomized Algorithms for the Loop Cutset Problem
We show how to find a minimum weight loop cutset in a Bayesian network with
high probability. Finding such a loop cutset is the first step in the method of
conditioning for inference. Our randomized algorithm for finding a loop cutset
outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least
1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is
the minimal size of a minimum weight loop cutset, and n is the number of
vertices. We also show empirically that a variant of this algorithm often finds
a loop cutset that is closer to the minimum weight loop cutset than the ones
found by the best deterministic algorithms known
Efficiency at optimal work from finite reservoirs: a probabilistic perspective
We revisit the classic thermodynamic problem of maximum work extraction from
two arbitrary sized hot and cold reservoirs, modelled as perfect gases.
Assuming ignorance about the extent to which the process has advanced, which
implies an ignorance about the final temperatures, we quantify the prior
information about the process and assign a prior distribution to the unknown
temperature(s). This requires that we also take into account the temperature
values which are regarded to be unphysical in the standard theory, as they lead
to a contradiction with the physical laws. Instead in our formulation, such
values appear to be consistent with the given prior information and hence are
included in the inference. We derive estimates of the efficiency at optimal
work from the expected values of the final temperatures, and show that these
values match with the exact expressions in the limit when any one of the
reservoirs is very large compared to the other. For other relative sizes of the
reservoirs, we suggest a weighting procedure over the estimates from two valid
inference procedures, that generalizes the procedure suggested earlier in [J.
Phys. A: Math. Theor. {\bf 46}, 365002 (2013)]. Thus a mean estimate for
efficiency is obtained which agrees with the optimal performance to a high
accuracy.Comment: 14 pages, 6 figure
Conflict-Free Coloring Made Stronger
In FOCS 2002, Even et al. showed that any set of discs in the plane can
be Conflict-Free colored with a total of at most colors. That is,
it can be colored with colors such that for any (covered) point
there is some disc whose color is distinct from all other colors of discs
containing . They also showed that this bound is asymptotically tight. In
this paper we prove the following stronger results:
\begin{enumerate} \item [(i)] Any set of discs in the plane can be
colored with a total of at most colors such that (a) for any
point that is covered by at least discs, there are at least
distinct discs each of which is colored by a color distinct from all other
discs containing and (b) for any point covered by at most discs,
all discs covering are colored distinctively. We call such a coloring a
{\em -Strong Conflict-Free} coloring. We extend this result to pseudo-discs
and arbitrary regions with linear union-complexity.
\item [(ii)] More generally, for families of simple closed Jordan regions
with union-complexity bounded by , we prove that there exists
a -Strong Conflict-Free coloring with at most colors.
\item [(iii)] We prove that any set of axis-parallel rectangles can be
-Strong Conflict-Free colored with at most colors.
\item [(iv)] We provide a general framework for -Strong Conflict-Free
coloring arbitrary hypergraphs. This framework relates the notion of -Strong
Conflict-Free coloring and the recently studied notion of -colorful
coloring. \end{enumerate}
All of our proofs are constructive. That is, there exist polynomial time
algorithms for computing such colorings
- …
