21,798 research outputs found
Electromagnetic flow rate meter
A liquid metal, whose flow rate is to be determined, is directed through a chamber made of electrically-insulating material on which there is impressed a magnetic field perpendicular to the direction of flow of the liquid metal. The magnetic field is made to increase in strength in a downstream direction of the flow of liquid metal. At least a pair of electrodes are disposed in the chamber traversely and perpendicular to the direction of flow and an ammeter is connected between the electrodes. Electrodes may be disposed in the top or the bottom of the chamber and each may be segmented. Oppositely disposed electrodes may be used with at least one dividing wall extending from each electrode to cause reversal of the direction of flow of the liquid metal. The magnetic field may be provided by electromagnets or permanent magnets such as shaded pole permanent magnets
Ion beam sputter-etched ventricular catheter for hydrocephalus shunt
A cerebrospinal fluid shunt in the form of a ventricular catheter for controlling the condition of hydrocephalus by relieving the excessive cerebrospinal fluid pressure is described. A method for fabrication of the catheter and shunting the cerebral fluid from the cerebral ventricles to other areas of the body is also considered. Shunt flow failure occurs if the ventricle collapse due to improper valve function causing overdrainage. The ventricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large openings at its inlet end and a multiplicity of microscopic openings along its lateral surfaces
Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt
The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body
Intercalated graphite electrical conductors
For years NASA has wanted to reduce the weight of spacecraft and aircraft. Experiments are conducted to find a lightweight synthetic metal to replace copper. The subject of this paper, intercalated graphite, is such a material. Intercalated graphite is made by heating petroleum or coal to remove the hydrogen and to form more covalent bonds, thus increasing the molecular weight. The coal or petroleum eventually turns to pitch, which can then be drawn into a fiber. With continued heating the pitch-based fiber releases hydrogen and forms a carbon fiber. The carbon fiber, if heated sufficiently, becomes more organized in parallel layers of hexagonally arranged carbon atoms in the form of graphite. A conductor of intercalated graphite is potentially useful for spacecraft or aircraft applications because of its low weight
Arc-textured high emittance radiator surfaces
High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment
Diamondlike flakes
A carbon coating was vacuum arc deposited on a smooth surface of a target which was simultaneously ion beam sputtered. The bombarding ions have sufficient energy to create diamond bonds. Spalling occurs as the carbon deposit thickens. The resulting diamond like carbon flakes improve thermal, electrical, mechanical, and tribological properties when used in aerospace structures and components
Method of making dished ion thruster grids
A pair of flat grid blanks are clamped together at their edges with an impervious metal sheet on top. All of the blanks and sheets are dished simultaneously by forcing fluid to inflate an elastic sheet which contacts the bottom grid blank. A second impervious metal sheet is inserted between the two grid blanks if the grids have high percentage open areas. The dished grids are stress relieved simultaneously
Process for glass coating an ion accelerator grid Patent
Helium outgassing process for fused glass coating on ion accelerator gri
Diamondlike flake composites
A carbon coating is vacuum arc deposited on a smooth surface of a target which is simultaneously ion beam sputtered. The bombarding ions have sufficient energy to create diamond bonds. Spalling occurs as the carbon deposit thickens. The resulting diamond-like carbon flakes are mixed with a binder or matrix material to form a composite material having improved thermal, electrical, mechanical, and tribological properties when used in aerospace structures and components
Embedding the Pentagon
The Pentagon Model is an explicit supersymmetric extension of the Standard
Model, which involves a new strongly-interacting SU(5) gauge theory at
TeV-scale energies. We show that the Pentagon can be embedded into an SU(5) x
SU(5) x SU(5) gauge group at the GUT scale. The doublet-triplet splitting
problem, and proton decay compatible with experimental bounds, can be
successfully addressed in this context. The simplest approach fails to provide
masses for the lighter two generations of quarks and leptons; however, this
problem can be solved by the addition of a pair of antisymmetric tensor fields
and an axion.Comment: 39 page
- …