8 research outputs found

    Can CO2 hydrate assist in the underground storage of carbon dioxide?

    Get PDF
    The sequestration of CO2 in the deep geosphere is one potential method for reducing anthropogenic emissions to the atmosphere without necessarily incurring a significant change in our energy-producing technologies. Containment of CO2 as a liquid and an associated hydrate phase, under cool conditions, offers an alternative underground storage approach compared with conventional supercritical CO2 storage at higher temperatures. We briefly describe conventional approaches to underground storage, review possible approaches for using CO2 hydrate in CO2 storage generally, and comment on the important role CO2 hydrate could play in underground storage. Cool underground storage appears to offer certain advantages in terms of physical, chemical and mineralogical processes, which may usefully enhance trapping of the stored CO2. This approach also appears to be potentially applicable to large areas of sub-seabed sediments offshore Western Europe

    Sediment-hosted gas hydrates : new insights on natural and synthetic systems

    Get PDF
    In the public's imagination, hydrates are seen as either a potential new source of energy to be exploited as the world uses up its reserves of oil and gas or as a major environmental hazard. Scientists, however, have expressed great uncertainty as to the global volume of hydrates and have reached little agreement on how they might be exploited. Both of these uncertainties can be reduced by a better understanding of how hydrates are held within sediments. There are conflicting ideas as to whether hydrates are disseminated within selected lithologies or trapped within fractures comparable to mineral lodes. To resolve this, hydrates have to be examined at all scales ranging from using seismics to microscopic studies. Their position within sediments also influences the stability of methane hydrate in responding to pressure and temperature and how the released gas might transfer to the ocean, atmosphere, or to a transport mechanism for recovery. These results also run parallel with the studies of carbon dioxide hydrate, which is being considered as a potential sequestion medium

    Mapping hydrate stability zones offshore Scotland

    No full text
    One practical method to reduce environmentally damaging greenhouse gas emissions is through the geological storage of carbon dioxide. Deep, warm storage of carbon dioxide is currently taking place at Sleipner, North Sea and Weyburn, Canada. It is, however, also possible to store carbon dioxide as a liquid and hydrate in cool, sub-seabed sediments. Offshore north and west of Scotland seafloor pressures and temperatures are suitable for hydrate formation. In addition to the possibility of natural methane hydrate being present in this region, conditions may also be favourable for carbon dioxide storage as a liquid and hydrate. A computer program has been developed to calculate the depth to the base of the carbon dioxide and methane hydrate stability zones in two offshore regions: the Faeroe–Shetland Channel and the northern Rockall Trough. Results predict that methane hydrate remains stable to a maximum depth of 650 m below the seabed in the Faeroe–Shetland Channel, and 600 m below the seabed in the northern Rockall Trough; the carbon dioxide hydrate stability zone extends below the seabed to a depth of 345 and 280 m, respectively. No physical evidence for the existence of natural hydrate in these regions has been confirmed. Suitable conditions for carbon dioxide storage as a liquid and hydrate exist, and should this storage method be developed further, a more refined program and greater offshore investigations to improve data sets would be necessary to scope the full potential
    corecore