35 research outputs found

    Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer

    Get PDF
    BACKGROUND: Electronic noses are composites of nanosensor arrays. Numerous studies showed their potential to detect lung cancer from breath samples by analysing exhaled volatile compound pattern ("breathprint"). Expiratory flow rate, breath hold and inclusion of anatomic dead space may influence the exhaled levels of some volatile compounds; however it has not been fully addressed how these factors affect electronic nose data. Therefore, the aim of the study was to investigate these effects. METHODS: 37 healthy subjects (44 +/- 14 years) and 27 patients with lung cancer (60 +/- 10 years) participated in the study. After deep inhalation through a volatile organic compound filter, subjects exhaled at two different flow rates (50 ml/sec and 75 ml/sec) into Teflon-coated bags. The effect of breath hold was analysed after 10 seconds of deep inhalation. We also studied the effect of anatomic dead space by excluding this fraction and comparing alveolar air to mixed (alveolar + anatomic dead space) air samples. Exhaled air samples were processed with Cyranose 320 electronic nose. RESULTS: Expiratory flow rate, breath hold and the inclusion of anatomic dead space significantly altered "breathprints" in healthy individuals (p 0.05). These factors also influenced the discrimination ability of the electronic nose to detect lung cancer significantly. CONCLUSIONS: We have shown that expiratory flow, breath hold and dead space influence exhaled volatile compound pattern assessed with electronic nose. These findings suggest critical methodological recommendations to standardise sample collections for electronic nose measurements

    Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry

    Get PDF
    BACKGROUND: Exhaled breath volatile organic compound (VOC) analysis for airway disease monitoring is promising. However, contrary to nitric oxide the method for exhaled breath collection has not yet been standardized and the effects of expiratory flow and breath-hold have not been sufficiently studied. These manoeuvres may also reveal the origin of exhaled compounds. METHODS: 15 healthy volunteers (34 +/- 7 years) participated in the study. Subjects inhaled through their nose and exhaled immediately at two different flows (5 L/min and 10 L/min) into methylated polyethylene bags. In addition, the effect of a 20 s breath-hold following inhalation to total lung capacity was studied. The samples were analyzed for ethanol and acetone levels immediately using proton-transfer-reaction mass-spectrometer (PTR-MS, Logan Research, UK). RESULTS: Ethanol levels were negatively affected by expiratory flow rate (232.70 +/- 33.50 ppb vs. 202.30 +/- 27.28 ppb at 5 L/min and 10 L/min, respectively, p < 0.05), but remained unchanged following the breath hold (242.50 +/- 34.53 vs. 237.90 +/- 35.86 ppb, without and with breath hold, respectively, p = 0.11). On the contrary, acetone levels were increased following breath hold (1.50 +/- 0.18 ppm) compared to the baseline levels (1.38 +/- 0.15 ppm), but were not affected by expiratory flow (1.40 +/- 0.14 ppm vs. 1.49 +/- 0.14 ppm, 5 L/min vs. 10 L/min, respectively, p = 0.14). The diet had no significant effects on the gasses levels which showed good inter and intra session reproducibility. CONCLUSIONS: Exhalation parameters such as expiratory flow and breath-hold may affect VOC levels significantly; therefore standardisation of exhaled VOC measurements is mandatory. Our preliminary results suggest a different origin in the respiratory tract for these two gasses

    Exhaled Breath Condensate pH in Lung Cancer, the Impact of Clinical Factors

    No full text
    PURPOSE: Lung cancer may be associated with airway acidification due to enhanced airway inflammation and oxidative stress. Exhaled breath condensate (EBC) pH is a non-invasive indicator of airway acidity; however, it is still unclear how EBC pH changes in lung cancer. The aim of the study was to investigate EBC pH in lung cancer together with clinical variables. METHODS: Thirty-five patients with lung cancer and 37 control subjects (21 patients with stable COPD and 16 non-COPD smokers) were enrolled. EBC was collected for pH, which was determined with the argon-purging method, compared among the groups and correlated with clinical variables of patients with lung cancer. RESULTS: No difference was found in EBC pH between patients with lung cancer and control subjects. However, endobronchial tumour localisation, squamous-cell carcinoma subtype and gastro-oesophageal reflux were associated with low EBC pH values. No relationship was observed between EBC pH and the presence of COPD, lung function variables or smoking history. CONCLUSIONS: Although, EBC pH is unchanged in lung cancer, lower EBC pH values are associated with distinct phenotypes. Our findings could facilitate further research on airway acidity in lung cancer
    corecore