2,373 research outputs found

    Donors in Ge as Qubits: Establishing Physical Attributes

    Full text link
    Quantum electronic devices at the single impurity level demand an understanding of the physical attributes of dopants at an unprecedented accuracy. Germanium-based technologies have been developed recently, creating a necessity to adapt the latest theoretical tools to the unique electronic structure of this material. We investigate basic properties of donors in Ge which are not known experimentally, but are indispensable for qubit implementations. Our approach provides a description of the wavefunction at multiscale, associating microscopic information from Density Functional Theory and envelope functions from state of the art multivalley effective mass calculations, including a central cell correction designed to reproduce the energetics of all group V donor species (P, As, Sb and Bi). With this formalism, we predict the binding energies of negatively ionized donors (D- state). Furthermore, we investigate the signatures of buried donors to be expected from Scanning Tunneling Microscopy (STM). The naive assumption that attributes of donor electrons in other semiconductors may be extrapolated to Ge is shown to fail, similar to earlier attempts to recreate in Si qubits designed for GaAs. Our results suggest that the mature techniques available for qubit realizations may be adapted to germanium to some extent, but the peculiarities of the Ge band structure will demand new ideas for fabrication and control

    Theory of one and two donors in Silicon

    Full text link
    We provide here a roadmap for modeling silicon nano-devices with one or two group V donors (D). We discuss systems containing one or two electrons, that is, D^0, D^-, D_2^+ and D_2^0 centers. The impact of different levels of approximation is discussed. The most accurate instances -- for which we provide quantitative results -- are within multivalley effective mass including the central cell correction and a configuration interaction account of the electron-electron correlations. We also derive insightful, yet less accurate, analytical approximations and discuss their validity and limitations -- in particular, for a donor pair, we discuss the single orbital LCAO method, the Huckel approximation and the Hubbard model. Finally we discuss the connection between these results and recent experiments on few dopant devices.Comment: 13 pages, 6 figure

    Fast and adaptive fractal tree-based path planning for programmable bevel tip steerable needles

    Get PDF
    © 2016 IEEE. Steerable needles are a promising technology for minimally invasive surgery, as they can provide access to difficult to reach locations while avoiding delicate anatomical regions. However, due to the unpredictable tissue deformation associated with needle insertion and the complexity of many surgical scenarios, a real-time path planning algorithm with high update frequency would be advantageous. Real-time path planning for nonholonomic systems is commonly used in a broad variety of fields, ranging from aerospace to submarine navigation. In this letter, we propose to take advantage of the architecture of graphics processing units (GPUs) to apply fractal theory and thus parallelize real-time path planning computation. This novel approach, termed adaptive fractal trees (AFT), allows for the creation of a database of paths covering the entire domain, which are dense, invariant, procedurally produced, adaptable in size, and present a recursive structure. The generated cache of paths can in turn be analyzed in parallel to determine the most suitable path in a fraction of a second. The ability to cope with nonholonomic constraints, as well as constraints in the space of states of any complexity or number, is intrinsic to the AFT approach, rendering it highly versatile. Three-dimensional (3-D) simulations applied to needle steering in neurosurgery show that our approach can successfully compute paths in real-time, enabling complex brain navigation

    Impact of the valley degree of freedom on the control of donor electrons near a Si/SiO_2 interface

    Full text link
    We analyze the valley composition of one electron bound to a shallow donor close to a Si/barrier interface as a function of an applied electric field. A full six-valley effective mass model Hamiltonian is adopted. For low fields, the electron ground state is essentially confined at the donor. At high fields the ground state is such that the electron is drawn to the interface, leaving the donor practically ionized. Valley splitting at the interface occurs due to the valley-orbit coupling, V_vo^I = |V_vo^I| e^{i theta}. At intermediate electric fields, close to a characteristic shuttling field, the electron states may constitute hybridized states with valley compositions different from the donor and the interface ground states. The full spectrum of energy levels shows crossings and anti-crossings as the field varies. The degree of level repulsion, thus the width of the anti-crossing gap, depends on the relative valley compositions, which vary with |V_vo^I|, theta and the interface-donor distance. We focus on the valley configurations of the states involved in the donor-interface tunneling process, given by the anti-crossing of the three lowest eigenstates. A sequence of two anti-crossings takes place and the complex phase theta affects the symmetries of the eigenstates and level anti-crossing gaps. We discuss the implications of our results on the practical manipulation of donor electrons in Si nanostructures.Comment: 8 pages, including 5 figures. v2: Minor clarifying changes in the text and figures. Change of title. As published in PR

    Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator

    Full text link
    We study the effect of uniform uniaxial strain on the ground state electronic configuration of a thin film manganite. Our model Hamiltonian includes the double-exchange, the Jahn-Teller electron-lattice coupling, and the antiferromagnetic superexchange. The strain arises due to the lattice mismatch between an insulating substrate and a manganite which produces a tetragonal distortion. This is included in the model via a modification of the hopping amplitude and the introduction of an energy splitting between the Mn e_g levels. We analyze the bulk properties of half-doped manganites and the electronic reconstruction at the interface between a ferromagnetic and metallic manganite and the insulating substrate. The strain drives an orbital selection modifying the electronic properties and the magnetic ordering of manganites and their interfaces.Comment: 8 pages, 8 figure

    Efeitos do desmatamento com maquinária pesada em latossolo amarelo textura muito argilosa.

    Get PDF
    bitstream/item/42512/1/Boletim-Pesquisa-157-CPATU.pd

    Uso e desenvolvimento de áreas na Amazônia brasileira.

    Get PDF
    bitstream/item/55266/1/CPATU-DOC-24.pd

    No Child Left Behind Leaves Behind English Language Learners

    Get PDF
    Goals 2000 and No Child Left behind have developed a new timeline for language acquisition, have promoted the practice of teaching to the test rather than the understanding of content, and High School Exit Exams have led to the widening of the achievement gap between ELL students and their Non-ELL counterparts. In additions, the policies’ narrow definition of success leads to federal sanctions that penalize schools with ELL student populations further contributing to the widening of the gap
    corecore