7 research outputs found

    Cooper pairing with finite angular momentum: BCS vs Bose limits

    Get PDF
    We revisit the old problem of exotic superconductivity as Cooper pairing with finite angular momentum emerging from a central potential. Based on some general considerations, we suggest that the phenomenonn is associated with interactions that keep electrons at some particular, finite distance (r_{0}), and occurs at a range of intermediate densities (n\sim 1/r_{0}^{3}). We discuss the ground state and the critical temperature in the framework of a standard functional-integral theory of the BCS to Bose crossover. We find that, due to the lower energy of two-body bound states with (l=0), the rotational symmetry of the ground state is always restored on approaching the Bose limit. Moreover in that limit the critical temperature is always higher for pairs with (l=0.) The breaking of the rotational symmetry of the continuum by the superfluid state thus seems to be a property of weakly-attractive, non-monotonic interaction potentials, at intermediate densities.Comment: Proceedings of SCENM02 (to appear in J. Phys. A

    Shock

    No full text
    corecore