5,654 research outputs found

    Projective measurement in nuclear magnetic resonance

    Get PDF
    It is demonstrated that nuclear magnetic resonance experiments using pseudopure spin states can give possible outcomes of projective quantum measurement and probabilities of such outcomes. The physical system is a cluster of six dipolar-coupled nuclear spins of benzene in a liquid-crystalline matrix. For this system with the maximum total spin S=3, the results of measuring SXS_X are presented for the cases when the state of the system is one of the eigenstates of SZS_Z.Comment: 9 pages incluing 3 figure

    Remarks on the Upper Bounds on the Higgs Boson Mass from Triviality

    Full text link
    We study the effects of the one-loop matching conditions on Higgs boson and top quark masses on the triviality bounds on the Higgs boson mass using βλ\beta_{\lambda} with corrected two-loop coefficients. We obtain quite higher results than previous ones and observe that the triviality bounds are not nearly influenced by varying top quark mass over the range measured at CDF and D0. The effects of typo errors in βλ(2)\beta_{\lambda}^{(2)} and the one-loop matching condition on the top quark mass are negligible. We estimate the size of effects on the triviality bounds from the one-loop matching condition on the Higgs boson mass.Comment: 9 pages, tar'ed gzip'ed uuencoded files, LaTex, 5 PostScript figures. To appear in Physical Review

    Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans.

    Get PDF
    Bifidobacterium longum subsp. infantis is a common member of the intestinal microbiota in breast-fed infants and capable of metabolizing human milk oligosaccharides (HMO). To investigate the bacterial response to different prebiotics, we analyzed both cell wall associated and whole cell proteins in B. infantis. Proteins were identified by LC-MS/MS followed by comparative proteomics to deduce the protein localization within the cell. Enzymes involved in the metabolism of lactose, glucose, galactooligosaccharides, fructooligosaccharides and HMO were constitutively expressed exhibiting less than two-fold change regardless of the sugar used. In contrast, enzymes in N-Acetylglucosamine and sucrose catabolism were induced by HMO and fructans, respectively. Galactose-metabolizing enzymes phosphoglucomutase, UDP-glucose 4-epimerase and UTP glucose-1-P uridylytransferase were expressed constitutively, while galactokinase and galactose-1-phosphate uridylyltransferase, increased their expression three fold when HMO and lactose were used as substrates for cell growth. Cell wall-associated proteomics also revealed ATP-dependent sugar transport systems associated with consumption of different prebiotics. In addition, the expression of 16 glycosyl hydrolases revealed the complete metabolic route for each substrate. Mucin, which possesses O-glycans that are structurally similar to HMO did not induced the expression of transport proteins, hydrolysis or sugar metabolic pathway indicating B. infantis do not utilize these glycoconjugates

    Quantum chaos algorithms and dissipative decoherence with quantum trajectories

    Full text link
    Using the methods of quantum trajectories we investigate the effects of dissipative decoherence in a quantum computer algorithm simulating dynamics in various regimes of quantum chaos including dynamical localization, quantum ergodic regime and quasi-integrable motion. As an example we use the quantum sawtooth algorithm which can be implemented in a polynomial number of quantum gates. It is shown that the fidelity of quantum computation decays exponentially with time and that the decay rate is proportional to the number of qubits, number of quantum gates and per gate dissipation rate induced by external decoherence. In the limit of strong dissipation the quantum algorithm generates a quantum attractor which may have complex or simple structure. We also compare the effects of dissipative decoherence with the effects of static imperfections.Comment: 6 pages, 6 figs, research at http://www.quantware.ups-tlse.f

    An ASCA Study of the W51 Complex

    Get PDF
    We present the analysis of ASCA archival data from the Galactic source W51. The ASCA spectra show that the soft (kT<= 2.5 keV) X-rays are of thermal origin and are compatible with W51C being a single, isothermal (kT~0.3 keV) supernova remnant at the far-side of the Sagittarius arm. The ASCA images reveal hard (kT>=2.5 keV) X-ray sources which were not seen in previous X-ray observations. Some of these sources are coincident with massive star-forming regions and the spectra are used to derive X-ray parameters. By comparing the X-ray absorbing column density with atomic hydrogen column density, we infer the location of star-forming regions relative to molecular clouds. There are unidentified hard X-ray sources superposed on the supernova remnant and we discuss the possibility of their association.Comment: 13 pages, 11 figures, to be published in Astronomical Journa

    Controlled spontaneous emission

    Full text link
    The problem of spontaneous emission is studied by a direct computer simulation of the dynamics of a combined system: atom + radiation field. The parameters of the discrete finite model, including up to 20k field oscillators, have been optimized by a comparison with the exact solution for the case when the oscillators have equidistant frequencies and equal coupling constants. Simulation of the effect of multi-pulse sequence of phase kicks and emission by a pair of atoms shows that both the frequency and the linewidth of the emitted spectrum could be controlled.Comment: 25 pages including 11 figure

    Quantum Separability of the vacuum for Scalar Fields with a Boundary

    Full text link
    Using the Green's function approach we investigate separability of the vacuum state of a massless scalar field with a single Dirichlet boundary. Separability is demonstrated using the positive partial transpose criterion for effective two-mode Gaussian states of collective operators. In contrast to the vacuum energy, entanglement of the vacuum is not modified by the presence of the boundary.Comment: 4 pages, 1 figure, Revtex, minor corrections. submitted to Phy. Rev.

    Higgs Mediated EDMs in the Next-to-MSSM: An Application to Electroweak Baryogenesis

    Full text link
    We perform a study on the predictions of electric-dipole moments (EDMs) of neutron, Mercury (Hg), Thallium (Tl), deuteron, and Radium (Ra) in the framework of next-to-minimal supersymmetric standard model (NMSSM) with CP-violating parameters in the superpotential and soft-supersymmetry-breaking sector. We confine to the case in which only the physical tree-level CP phase (ϕλ′−ϕκ′)(\phi'_\lambda - \phi'_\kappa), associated with the couplings of the singlet terms in the superpotential and with the vacuum-expectation-values (VEVs), takes on a nonzero value. We found that the one-loop contributions from neutralinos are mostly small while the two-loop Higgs-mediated contributions of the Barr-Zee (BZ) type diagrams dominate. We emphasize a scenario motivated by electroweak baryogenesis.Comment: 36 pages, 9 figures, to appear in PR

    High-performance Si microwire photovoltaics

    Get PDF
    Crystalline Si wires, grown by the vapor–liquid–solid (VLS) process, have emerged as promising candidate materials for lowcost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (L_n » 30 µm) and low surface recombination velocities (S « 70 cm·s^(-1)). Single-wire radial p–n junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics
    • …
    corecore