30,435 research outputs found
A Study on the structure of proton
The structure function of the proton has been investigated and has been found
to possess the power law behaviour in conformity with the empirical fits to the
experimental findings. We have estimated F(x, Q)/F(x,
Q) with the anomalous dimension D predicted from the
statistical model as an input and the result is found to be in good agreement
with the recent data available in the deep inelastic region.Comment: 3 page
Conversion of glassy antiferromagnetic-insulating phase to equilibrium ferromagnetic-metallic phase by devitrification and recrystallization in Al substituted PrCaMnO
We show that PrCaMnO with 2.5% Al substitution and
LaCaMnO (LCMO) exhibit qualitatively similar and
visibly anomalous M-H curves at low temperature. Magnetic field causes a broad
first-order but irreversible antiferromagnetic (AF)-insulating (I) to
ferromagnetic (FM)-metallic (M) transition in both and gives rise to soft FM
state. However, the low temperature equilibrium state of
PrCaMnAlO (PCMAO) is FM-M whereas that
of LCMO is AF-I. In both the systems the respective equilibrium phase coexists
with the other phase with contrasting order, which is not in equilibrium, and
the cooling field can tune the fractions of the coexisting phases. It is shown
earlier that the coexisting FM-M phase behaves like `magnetic glass' in LCMO.
Here we show from specially designed measurement protocols that the AF-I phase
of PCMAO has all the characteristics of magnetic glassy states. It devitrifies
on heating and also recrystallizes to equilibrium FM-M phase after annealing.
This glass-like AF-I phase also shows similar intriguing feature observed in
FM-M magnetic glassy state of LCMO that when the starting coexisting fraction
of glass is larger, successive annealing results in larger fraction of
equilibrium phase. This similarity between two manganite systems with
contrasting magnetic orders of respective glassy and equilibrium phases points
toward a possible universality.Comment: Highlights potential of CHUF (Cooling and Heating in Unequal Fields),
a new measurement protoco
Spherical collapse of a heat conducting fluid in higher dimensions without horizon
We consider a scenario where the interior spacetime,described by a heat
conducting fluid sphere is matched to a Vaidya metric in higher
dimensions.Interestingly we get a class of solutions, where following heat
radiation the boundary surface collapses without the appearance of an event
horizon at any stage and this happens with reasonable properties of matter
field.The non-occurrence of a horizon is due to the fact that the rate of mass
loss exactly counterbalanced by the fall of boundary radius.Evidently this
poses a counter example to the so-called cosmic censorship hypothesis.Two
explicit examples of this class of solutions are also given and it is observed
that the rate of collapse is delayed with the introduction of extra
dimensions.The work extends to higher dimensions our previous investigation in
4D.Comment: 6 page
I-V-T analysis of radiation damage in high efficiency Si solar cells
A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved
Cornering pseudoscalar-mediated dark matter with the LHC and cosmology
Models in which dark matter particles communicate with the visible sector through a pseudoscalar mediator are well-motivated both from a theoretical and from a phenomenological standpoint. With direct detection bounds being typically subleading in such scenarios, the main constraints stem either from collider searches for dark matter, or from indirect detection experiments. However., LHC searches for the mediator particles themselves can not only compete with — or even supersede — the reach of direct collider dark matter probes, but they can also test scenarios in which traditional monojet searches become irrelevant, especially when the mediator cannot decay on-shell into dark matter particles or its decay is suppressed. In this work we perform a detailed analysis of a pseudoscalar-mediated dark matter simplified model, taking into account a large set of collider constraints and concentrating on the parameter space regions favoured by cos-mological and astrophysical data. We find that mediator masses above 100-200 GeV are essentially excluded by LHC searches in the case of large couplings to the top quark, while forthcoming collider and astrophysical measurements will further constrain the available parameter space
- …