28 research outputs found

    Analysis on the effect of ZnO on Carbon nanotube by spray pyrolysis method

    Get PDF
    Background: ZnO/CNT nanocomposites were prepared using Zinc acetate source materials and with the assistance of copper plate, glycine and sugar solution. The combined behavior between these two materials may give rise to the production of advanced materials with a wide range of applications in electronics and optoelectronics. Methods: The ZnO-CNT nanostructures are successfully prepared by simple perfume spray pyrolysis method on copper substrate. The possible growth mechanism of ZnO-CNT nanocrystals formation by this method has been tried to explore the sensor and optical properties has been demonstrated. Results: The as-synthesized ZnO-CNT nanostructures were characterized using the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) pattern measured with Cu Kα radiation. Studies of the morphologies of the ZnO-coated CNTs revealed no significant change in the internal structures single walled graphite sheets and the diameters of the CNTs, but the ZnO appeared to form a layer of thinfilm single crystalline particles attaching to the surface of the nanotubes. The photoluminescence (PL) measurements excited by the 380 nm were done at room temperature. CNTs are easy to be entangled and agglomerate due to their long length and low diffusive mobility in base fluids. Conclusion: The lower mobility was found to occur for the ZnO/CNT composite where a linear sensitivity behavior was measured and it reaches high at the temperature of 200 °C. The samples luminescence is dominated by well-structured ultraviolet band emission and almost no deep level emission was observed, revealing a high optical quality of the produced structures

    Dielectric performance of CeO2/ZnO core–shell nanocomposite with their structural, optical and morphological properties

    No full text
    Binary CeO2/ZnO nanocomposite was synthesized by combined co-precipitation and hydrothermal method. The dielectric property of the CeO2/ZnO was investigated. The grain boundaries were responsible for the increase and decrease of dielectric constant and AC conductivity which is discussed in the dielectric study. The prepared sample was carried out for the thermogravimetric, structural, optical, morphological investigations. The thermal stability of the sample was examined using the thermogravimetric analysis. Both the CeO2 and ZnO phases were confirmed from the Powder X-ray diffraction analysis (PXRD). The fourier transform infrared spectroscopy (FTIR) study further affirmed the presence of ceria and ZnO metal oxides in the nanocomposite is reported in detail. The particle size distribution graph was plotted from the high resolution-scanning electron microscopic image. CeO2/ZnO nanocomposite exhibited the spherical like structures which was confirmed from the high resolution transmission microscopy (HRTEM) images

    Electrochemical performance of H+ implantation intercalate with LiCo3O4 thin film and its applications

    No full text
    The purpose of this research is to explore into the impacts of H+ ion implantation on Al/ LiCo3O4/ITO (MIS) thin films employing the sprayed pyrolysis method. The discharged and recharged specimens were characterized using XRD, EDAX, and SEM techniques. Using LiCo3O4 CV curves in KOH solution at various scan speeds, the electrochemical behavior was investigated. Li+ and H+ ions from a KOH solution underwent a reversible insertion into the diffusion coefficient values of LiCo3O4 particles. Increased protonic conductivity and a higher diffusion coefficient value of 3.55x10−8 cm2/S with a scan rate of 100 mV/S are the results of the intercalation of lithium with the cobalt oxide LiCo3O4 and this implantation affects the possible causes of the observed changes in the properties of lithium cobalt oxides. The spray pyrolysis method's process parameters have a major impact on the H+ implantation film's characteristics. As a result, they have been enhanced to produce high-quality LiCo3O4 films with excellent electrical conductivity and transparency

    Assembled composite of hematite iron oxide on sponge-like BiOCl with enhanced photocatalytic activity

    No full text
    Herein, sponge-like bismuthoxychloride (BiOCl) and hematite iron oxide (α-Fe2O3) were synthesized by simple and inexpensive method via two-step process, including hydrothermal and solution combustion method. The BiOCl/α-Fe2O3 composite photocatalysts were prepared by incorporating various weight ratios of α-Fe2O3 on BiOCl by a low-cost wet chemical process. The chemical interaction, phase and crystalline nature of the samples were ascertained by Fourier transform infrared spectroscopy (FT-IR) and x-ray diffraction (XRD). Further, the surface morphology and optical properties of the fabricated materials was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffuse reflection spectroscopy (DRS). Photocatalytic activities of the fabricated samples towards the photocatalytic degradation of direct red 81 (DR81) was evaluated under ultraviolet light illumination. The BiOCl/α-Fe2O3 composites showed remarkably enhanced photo-induced catalytic performances. The photocatalyst with optimal content of α-Fe2O3 with the highest photocatalytic performance was observed to 1%-BiOCl/α-Fe2O3. The synergistic improvement in the photodegradation of BiOCl/α-Fe2O3 sample may be because of an expansion in the noticeable light absorption efficiency as well as fast photo-generated charge separation. A probable mechanism for the photocatalytic degradation has been proposed for the catalytic performance of BiOCl/α-Fe2O3 photocatalyst. Keywords: Bismuthoxychloride, Direct red 81, Iron oxide, Photocatalysis, Photodegradatio

    Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis

    Get PDF
    Nickel oxides nanoparticles (NiO NPs) were synthesized by biosynthesis method with the help of phytoconstituents present in the neem leaf. Further the synthesized NiO NPs were subjected for structural, optical, morphological and magnetic properties. The XRD patterns clearly infer the presence of polycrystalline nature of samples (0 1 0), (0 1 1) and (0 1 2) with hexagonal crystal phase. Morphological studies using Transmission Electron Microscope (TEM) reveals that the biosynthesized NiO NPs were in shape of oblong with 12 nm in size. Elemental analysis (EDAX) confirms the quantity of Ni is present at 51% and remaining O as 49% as well as the mass magnetization values of 61 emu/g are also recorded for NiO NPs and its coercivity values in the range of 0.2–0.4 of nanoparticles respectively. Finally the NiO NPs was studied for bacterial activity against Staphylococcus aureus (MTCC 1430) and followed by Escherichia coli (MTCC 739) by agar diffusion assay. Keywords: Neem seed, NiO NPs, Coercivity, Magnetic properties, Bacterial activitie
    corecore