5 research outputs found
Simulation of Electrical Characteristics of a Solar Panel
The fast-growing photovoltaic system market leads to the necessity of the informed choice of major energy components and optimization of operating conditions in order to improve energy efficiency. Development of mathematical models of the main components of photovoltaic systems to ensure their comprehensive study is an urgent problem of improving and practical using of the technology of electrical energy production. The paper presents a mathematical model of the solar module implemented in the popular software MATLAB/Simulink. Equivalent circuit of the solar cell with a diode parallel without derived resistance is used for modelling. The serie8s resistance of the solar module is calculated by Newton's iterative method using the data of its technical specifications. It ensures high precision of simulation. Model validity was evaluated by the well-known technical characteristics of the module Solarex MSX 60. The calculation results of the experiment showed that the obtained current-voltage and current-watt characteristics of the model are compatible with those of the manufacturer
Optical and photoluminescence modulation in monolayer molybdenum sulfide thin films via electrochemical deposition: Exploring the influence of deposition voltage and time
Monolayer Molybdenum Disulfide (MoS2) exhibits a direct bandgap characterized by strong visible photoluminescence, high on/off ratio, high optical transparency, low dissipation rate, and light absorption in a wide energy spectrum. The influence of different deposition voltages and durations on the optical and photoluminescent characteristics was investigated using Raman spectroscopy, UV–visible spectrophotometry, and photoluminescence spectroscopy. All samples were analyzed for optical properties to confirm their suitability for optoelectronics. The energy band gap and Urbach energy (band tail width) of all films were 1.87 to 2.52 eV and 0.31 to 0.49 eV, respectively. The findings reveal a correlation between enhanced absorption properties and a decrease in the bandgap of the semiconducting film layers, implying the potential utility of the deposited films as efficient solar absorbers. Furthermore, the improved transmittance observed within the visible wavelength range suggests their applicability as effective window layers in thin-film photodiodes. It was established that varying the voltage and time of deposition alone can enhance the optoelectronic performance of the material in any device