543 research outputs found

    Catalytic activity of pepsin c

    Get PDF

    Dependence of nonlocal Gilbert damping on the ferromagnetic layer type in FM/Cu/Pt heterostructures

    Full text link
    We have measured the size effect in nonlocal Gilbert relaxation rate in FM(tFM_{FM}) / Cu (5nm) [/ Pt (2nm)] / Al(2nm) heterostructures, FM = \{ Ni81_{81}Fe19_{19}, Co60_{60}Fe20_{20}B20_{20}, pure Co\}. Common behavior is observed for three FM layers, where the additional relaxation obeys both a strict inverse power law dependence ΔG=Ktn\Delta G =K \:t^{n}, n=1.04±0.06n=-\textrm{1.04}\pm\textrm{0.06} and a similar magnitude K=224±40 MhznmK=\textrm{224}\pm\textrm{40 Mhz}\cdot\textrm{nm}. As the tested FM layers span an order of magnitude in spin diffusion length λSDL\lambda_{SDL}, the results are in support of spin diffusion, rather than nonlocal resistivity, as the origin of the effect

    Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    Full text link
    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81_{81}Fe19_{19} films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δα\Delta\alpha on the heavy-metal spin-sink layer thicknesses tN_\textrm{N} in direct-contact Ni81_{81}Fe19_{19}/(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81_{81}Fe19_{19} and (Pd, Pt) are separated by \unit[3]{nm} Cu. We attribute the quasi-linear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81_{81}Fe19_{19}, quantified using X-ray magnetic circular dichroism (XMCD) measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length

    High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy

    Full text link
    Current-induced domain wall (DW) displacements in an array of ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy have been directly observed by wide field Kerr microscopy. DWs in all wires in the array were driven simultaneously and their displacement on the micrometer-scale was controlled by the current pulse amplitude and duration. At the lower current densities where DW displacements were observed (j less than or equal to 1.5 x 10^12 A/m^2), the DW motion obeys a creep law. At higher current density (j = 1.8 x 10^12 A/m^2), zero-field average DW velocities up to 130 +/- 10 m/s were recorded.Comment: Minor changes to Fig. 1(b) and text, correcting for the fact that domain walls were subsequently found to move counter to the electron flow. References update

    Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet

    Get PDF
    The electric (E) field control of magnetic properties opens the prospects of an alternative to magnetic field or electric current activation to control magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have proven to be particularly sensitive to the influence of an E-field due to the interfacial origin of their anisotropy. In these systems, E-field effects have been recently applied to assist magnetization switching and control domain wall (DW) velocity. Here we report on two new applications of the E-field in a similar material : controlling DW nucleation and stopping DW propagation at the edge of the electrode

    Spin injection in Silicon at zero magnetic field

    Get PDF
    In this letter, we show efficient electrical spin injection into a SiGe based \textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field \textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.Comment: accepted in AP

    Electrical spin injection and detection in Germanium using three terminal geometry

    Full text link
    In this letter, we report on successful electrical spin injection and detection in \textit{n}-type germanium-on-insulator (GOI) using a Co/Py/Al2_{2}O3_{3} spin injector and 3-terminal non-local measurements. We observe an enhanced spin accumulation signal of the order of 1 meV consistent with the sequential tunneling process via interface states in the vicinity of the Al2_{2}O3_{3}/Ge interface. This spin signal is further observable up to 220 K. Moreover, the presence of a strong \textit{inverted} Hanle effect points at the influence of random fields arising from interface roughness on the injected spins.Comment: 4 pages, 3 figure

    The domain wall spin torque-meter

    Full text link
    We report the direct measurement of the non-adiabatic component of the spin-torque in domain walls. Our method is independent of both the pinning of the domain wall in the wire as well as of the Gilbert damping parameter. We demonstrate that the ratio between the non-adiabatic and the adiabatic components can be as high as 1, and explain this high value by the importance of the spin-flip rate to the non-adiabatic torque. Besides their fundamental significance these results open the way for applications by demonstrating a significant increase of the spin torque efficiency.Comment: 12 pages plus supplementary note
    corecore