76 research outputs found

    CARET analysis of multithreaded programs

    Full text link
    Dynamic Pushdown Networks (DPNs) are a natural model for multithreaded programs with (recursive) procedure calls and thread creation. On the other hand, CARET is a temporal logic that allows to write linear temporal formulas while taking into account the matching between calls and returns. We consider in this paper the model-checking problem of DPNs against CARET formulas. We show that this problem can be effectively solved by a reduction to the emptiness problem of B\"uchi Dynamic Pushdown Systems. We then show that CARET model checking is also decidable for DPNs communicating with locks. Our results can, in particular, be used for the detection of concurrent malware.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Reasoning about Threads with Bounded Lock Chains

    Full text link
    The problem of model checking threads interacting purely via the standard synchronization primitives is key for many concurrent program analyses, particularly dataflow analysis. Unfortunately, it is undecidable even for the most commonly used synchronization primitive, i.e., mutex locks. Lock usage in concurrent programs can be characterized in terms of lock chains, where a sequence of mutex locks is said to be chained if the scopes of adjacent (non-nested) mutexes overlap. Although the model checking problem for fragments of Linear Temporal Logic (LTL) is known to be decidable for threads interacting via nested locks, i.e., chains of length one, these techniques don’t extend to pro-grams with non-nested locks used in crucial applications like databases and device drivers. We exploit the fact that lock usage patterns in real life programs do not produce unbounded lock chains. For such a framework, we show, by using the new concept of Lock Causality Automata (LCA), that pre∗-closures of regular sets of states can be computed efficiently. Leveraging this new technique then allows us to formulate decision procedures for model checking threads communicating via bounded lock chains for fragments of LTL. Our new results narrow the decidability gap for LTL model checking of threads communicating via locks by pro-viding a more refined characterization for it in terms of boundedness of lock chains rather than the current state-of-the-art, i.e., nestedness of locks (chains of length one).

    Locality and Singularity for Store-Atomic Memory Models

    Full text link
    Robustness is a correctness notion for concurrent programs running under relaxed consistency models. The task is to check that the relaxed behavior coincides (up to traces) with sequential consistency (SC). Although computationally simple on paper (robustness has been shown to be PSPACE-complete for TSO, PGAS, and Power), building a practical robustness checker remains a challenge. The problem is that the various relaxations lead to a dramatic number of computations, only few of which violate robustness. In the present paper, we set out to reduce the search space for robustness checkers. We focus on store-atomic consistency models and establish two completeness results. The first result, called locality, states that a non-robust program always contains a violating computation where only one thread delays commands. The second result, called singularity, is even stronger but restricted to programs without lightweight fences. It states that there is a violating computation where a single store is delayed. As an application of the results, we derive a linear-size source-to-source translation of robustness to SC-reachability. It applies to general programs, regardless of the data domain and potentially with an unbounded number of threads and with unbounded buffers. We have implemented the translation and verified, for the first time, PGAS algorithms in a fully automated fashion. For TSO, our analysis outperforms existing tools

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Software Verification for Weak Memory via Program Transformation

    Get PDF
    Despite multiprocessors implementing weak memory models, verification methods often assume Sequential Consistency (SC), thus may miss bugs due to weak memory. We propose a sound transformation of the program to verify, enabling SC tools to perform verification w.r.t. weak memory. We present experiments for a broad variety of models (from x86/TSO to Power/ARM) and a vast range of verification tools, quantify the additional cost of the transformation and highlight the cases when we can drastically reduce it. Our benchmarks include work-queue management code from PostgreSQL

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    Context-Bounded Analysis For Concurrent Programs With Dynamic Creation of Threads

    Full text link
    Context-bounded analysis has been shown to be both efficient and effective at finding bugs in concurrent programs. According to its original definition, context-bounded analysis explores all behaviors of a concurrent program up to some fixed number of context switches between threads. This definition is inadequate for programs that create threads dynamically because bounding the number of context switches in a computation also bounds the number of threads involved in the computation. In this paper, we propose a more general definition of context-bounded analysis useful for programs with dynamic thread creation. The idea is to bound the number of context switches for each thread instead of bounding the number of switches of all threads. We consider several variants based on this new definition, and we establish decidability and complexity results for the analysis induced by them

    Ogre and Pythia: An Invariance Proof Method for Weak Consistency Models

    Get PDF
    We design an invariance proof method for concurrent programs parameterised by a weak consistency model. The calculational design of the invariance proof method is by abstract interpretation of a truly parallel analytic semantics. This generalises the methods by Lamport and Owicki-Gries for sequential consistency. We use cat as an example of language to write consistency specifications of both concurrent programs and machine architectures
    • …
    corecore