19 research outputs found

    Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model

    Get PDF
    Skin damages have always been considered as one of the most common physical injuries. Therefore, many researches have been conducted to find an efficient method for wound healing. Since hydrogels have suitable characteristics, they are widely used for this purpose. In this study, based on the high efficiency of alginate and chitosan hydrogels in the wound healing, different concentrations of hesperidin were loaded to alginate and chitosan hydrogels followed by evaluating their morphology, swelling properties, release, weight loss, hemo- and cytocompatibility, antibacterial and toxicity properties. Finally, the therapeutic function of the prepared hydrogels was evaluated in the full-thickness dermal wound in a rat model. Our results indicated that the hydrogels have appropriate porosity (91.2 ± 5.33) with the interconnected pores. Biodegradability of the prepared hydrogel was confirmed with weight loss assessment (almost 80 after 14 days). Moreover, the time-kill assay showed the antibacterial properties of hydrogels, and MTT assay revealed the positive effect of hydrogels on cell proliferation, and they have no toxicity effect on cells. Also, the in vivo results indicated that the prepared hydrogels had better wound closure than the gauze-treated wound (the control group), and the highest wound closure percentage was observed for the alginate/chitosan/10 hesperidin group. All in all, this study shows that alginate/chitosan hydrogels loaded with 10 of hesperidin can be used to treat skin injuries in humans. © 2019 Elsevier B.V

    Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay

    No full text
    Azadeh Asefnejad1, Mohammad Taghi Khorasani2, Aliasghar Behnamghader3, Babak Farsadzadeh1, Shahin Bonakdar4 1Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; 2Iran Polymers and Petrochemical Institute, Tehran, Iran; 3Materials and Energy Research Center, Tehran, Iran; 4National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran Background: Biodegradable polyurethanes have found widespread use in soft tissue engineering due to their suitable mechanical properties and biocompatibility. Methods: In this study, polyurethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and a copolymer of 1,4-butanediol as a chain extender. Polyurethane scaffolds were fabricated by a combination of liquid–liquid phase separation and salt leaching techniques. The effect of the NCO:OH ratio on porosity content and pore morphology was investigated. Results: Scanning electron micrographs demonstrated that the scaffolds had a regular distribution of interconnected pores, with pore diameters of 50–300 µm, and porosities of 64%–83%. It was observed that, by increasing the NCO:OH ratio, the average pore size, compressive strength, and compressive modulus increased. L929 fibroblast and chondrocytes were cultured on the scaffolds, and all samples exhibited suitable cell attachment and growth, with a high level of biocompatibility. Conclusion: These biodegradable polyurethane scaffolds demonstrate potential for soft tissue engineering applications. Keywords: polyurethane, tissue engineering, biodegradable, fibroblast cell

    EVALUATION OF ANTIBACTERIAL PROPERTIES OF POLYLACTIC ACID-POLYCAPROLACTONE-CONTAINING HYDROXYAPATITE AND ZINC OXIDE NANOPARTICLES IN HARD TISSUE ABSORBABLE SCAFFOLDS

    No full text
    Today, many people need to use bone grafts and implants because of damage to bone tissue. Due to the stimulation of the immune system after implantation, infection at the operation site is very common, which causes swelling and pain in the operation area. The use of zinc oxide nanoparticles reduces infection at the operation site and reduces the patient's need for antibiotics. In the present study, the morphology of the scaffolds was investigated by field emission scanning electron microscope (FE-SEM). The toxicity of the samples was evaluated using MTT assay. The behavior of nanocomposites against Escherichia coli and Staphylococcus aureus was investigated by measuring the diameter of the growth inhibition zone. It was found that modification of scaffolds with nanoparticles caused a growth inhibition in bacterial culture medium. It was also observed that fibroblast cells on the surface of the modified scaffolds had longer survival than polymer scaffolds. This study showed that the addition of oxidizing nanoparticles improves the antibacterial properties of scaffolds and cell viability and reduces scaffold toxicity

    Corrigendum

    No full text
    Biazar E, Heidari M, Asefnezhad A, Montazeri N. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation. International Journal of Nanomedicine. 2011;6:631-639.The correct spelling of the third author's name is "Asefnejad."Original articl

    In-vitro cellular and in-vivo investigation of ascorbic acid and β-glycerophosphate loaded gelatin/sodium alginate injectable hydrogels for urinary incontinence treatment

    No full text
    Urinary incontinence is one of the most common disorders especially in adult women. In this study, cellular and in-vivo analyses were performed on (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and CaCl(2) cross-linked alginate and gelatin hydrogels containing β-glycerophosphate and ascorbic acid to evaluate the regenerative potential as injectable compression agents for the treatment of urinary incontinence. The hydrogels were prepared with different percentages of components and were named as GA1 (7.2% w/v gelatin, 6% w/v sodium alginate, 0.5:1w/w GPTMS, CaCl(2) 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), GA2 (10% w/v gelatin, 8.5% w/v sodium alginate, 0.5:1 w/w GPTMS, CaCl(2) 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate), and GA3 (10% (w/v) gelatin, 8.5% w/v sodium alginate, 1:1 w/w GPTMS, CaCl(2) 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, 1.5 mg/mL β-glycerophosphate) hydrogels. The results of cell studies showed that although all three samples supported cell adhesion and survival, the cellular behavior of the GA2 sample was better than the other samples. Animal tests were performed on the optimal GA2 sample, which showed that this hydrogel repaired the misfunction tissue in a rat model within 4 weeks and the molecular layer thickness was reached the normal tissue after this duration. It seems that these hydrogels, especially GA2 sample containing 10% (w/v) gelatin, 8.5% (w/v) sodium alginate, 0.5:1 (w/w) GPTMS, CaCl(2) 1% (wt) sodium alginate, 50 μg/mL ascorbic acid, and 1.5 mg/mL β-glycerophosphate, can act as an injetable hydrogel for urinary incontinence treatment without the need for repeating the injection

    In-vitro cellular and in-vivo investigation of ascorbic acid and β-glycerophosphate loaded gelatin/sodium alginate injectable hydrogels for urinary incontinence treatment

    No full text
    Urinary incontinence is one of the most common disorders especially in adult women. In this study, cellular and in-vivo analyses were performed on (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and CaCl2 cross-linked alginate and gelatin hydrogels containing beta-glycerophosphate and ascorbic acid to evaluate the regenerative potential as injectable compression agents for the treatment of urinary incontinence. The hydrogels were prepared with different percentages of components and were named as GA1 (7.2% w/v gelatin, 6% w/v sodium alginate, 0.5:1w/w GPTMS, CaCl2 1% (wt) sodium alginate, 50 mu g/mL ascorbic acid, 1.5 mg/mL beta-glycerophosphate), GA2 (10% w/v gelatin, 8.5% w/v sodium alginate, 0.5:1 w/w GPTMS, CaCl2 1% (wt) sodium alginate, 50 mu g/mL ascorbic acid, 1.5 mg/mL beta-glycerophosphate), and GA3 (10% (w/v) gelatin, 8.5% w/v sodium alginate, 1:1 w/w GPTMS, CaCl2 1% (wt) sodium alginate, 50 mu g/mL ascorbic acid, 1.5 mg/mL beta-glycerophosphate) hydrogels. The results of cell studies showed that although all three samples supported cell adhesion and survival, the cellular behavior of the GA2 sample was better than the other samples. Animal tests were performed on the optimal GA2 sample, which showed that this hydrogel repaired the misfunction tissue in a rat model within 4 weeks and the molecular layer thickness was reached the normal tissue after this duration. It seems that these hydrogels, especially GA2 sample containing 10% (w/v) gelatin, 8.5% (w/v) sodium alginate, 0.5:1 (w/w) GPTMS, CaCl2 1% (wt) sodium alginate, 50 mu g/mL ascorbic acid, and 1.5 mg/mL beta-glycerophosphate, can act as an injetable hydrogel for urinary incontinence treatment without the need for repeating the injection

    Corrigendum

    No full text
    Heidari S, Azhdadi SN, Asefnezhad A, Sadraeian M, Montazeri M, Biazar EThe relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation. International Journal of Nanomedicine. 2011;6:641-647.The correct spelling of the third author's name is "Asefnejad."Original Articl
    corecore